Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Finite Element Analysis of Composite Materials Using Abaqus السبت 19 سبتمبر 2020, 11:46 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Finite Element Analysis of Composite Materials Using Abaqus Ever J. Barbero
و المحتوى كما يلي :
Contents Series Preface xiii Preface xv Acknowledgments xix List of Symbols xxi List of Examples xxix 1 Mechanics of Orthotropic Materials 1 1.1 Lamina Coordinate System . 1 1.2 Displacements . 1 1.3 Strain . 2 1.4 Stress . 3 1.5 Contracted Notation . 4 1.5.1 Alternate Contracted Notation . 5 1.6 Equilibrium and Virtual Work . 6 1.7 Boundary Conditions . 8 1.7.1 Traction Boundary Conditions . 8 1.7.2 Free Surface Boundary Conditions . 8 1.8 Continuity Conditions 8 1.8.1 Traction Continuity . 8 1.8.2 Displacement Continuity . 9 1.9 Compatibility . 9 1.10 Coordinate Transformations . 10 1.10.1 Stress Transformation 12 1.10.2 Strain Transformation 14 1.11 Transformation of Constitutive Equations . 15 1.12 3D Constitutive Equations 17 1.12.1 Anisotropic Material . 18 1.12.2 Monoclinic Material . 19 1.12.3 Orthotropic Material . 20 1.12.4 Transversely Isotropic Material . 21 1.12.5 Isotropic Material 23 viiviii Finite Element Analysis of Composite Materials 1.13 Engineering Constants 24 1.13.1 Restrictions on Engineering Constants . 27 1.14 From 3D to Plane Stress Equations . 29 1.15 Apparent Laminate Properties . 30 Suggested Problems 32 2 Introduction to Finite Element Analysis 35 2.1 Basic FEM Procedure 35 2.1.1 Discretization . 36 2.1.2 Element Equations 36 2.1.3 Approximation over an Element 37 2.1.4 Interpolation Functions . 38 2.1.5 Element Equations for a Specific Problem . 40 2.1.6 Assembly of Element Equations . 41 2.1.7 Boundary Conditions 42 2.1.8 Solution of the Equations 42 2.1.9 Solution Inside the Elements 42 2.1.10 Derived Results 43 2.2 General Finite Element Procedure . 43 2.3 Solid Modeling, Analysis, and Visualization 46 2.3.1 Model Geometry . 47 2.3.2 Material and Section Properties . 57 2.3.3 Assembly . 61 2.3.4 Solution Steps 63 2.3.5 Loads . 63 2.3.6 Boundary Conditions 65 2.3.7 Meshing and Element Type . 68 2.3.8 Solution Phase 70 2.3.9 Post-processing and Visualization 73 Suggested Problems 89 3 Elasticity and Strength of Laminates 91 3.1 Kinematic of Shells 92 3.1.1 First-Order Shear Deformation Theory . 93 3.1.2 Kirchhoff Theory . 97 3.1.3 Simply Supported Boundary Conditions 99 3.2 Finite Element Analysis of Laminates . 100 3.2.1 Element Types and Naming Convention 101 3.2.2 Thin (Kirchhoff) Shell Elements 104 3.2.3 Thick Shell Elements . 104 3.2.4 General-purpose (FSDT) Shell Elements 104 3.2.5 Continuum Shell Elements 105 3.2.6 Sandwich Shells 106 3.2.7 Nodes and Curvature 106 3.2.8 Drilling Rotation . 106Table of Contents ix 3.2.9 A, B, D, H Input Data for Laminate FEA . 107 3.2.10 Equivalent Orthotropic Input for Laminate FEA . 113 3.2.11 LSS for Multidirectional Laminate FEA 119 3.2.12 FEA of Ply Drop-Off Laminates 129 3.2.13 FEA of Sandwich Shells . 139 3.2.14 Element Coordinate System . 150 3.2.15 Constraints 159 3.3 Failure Criteria 163 3.3.1 2D Failure Criteria 163 3.3.2 3D Failure Criteria 166 3.4 Predefined Fields . 171 Suggested Problems 173 4 Buckling 177 4.1 Eigenvalue Buckling Analysis 177 4.1.1 Imperfection Sensitivity . 183 4.1.2 Asymmetric Bifurcation . 183 4.1.3 Post-critical Path . 184 4.2 Continuation Methods 187 Suggested Problems 192 5 Free Edge Stresses 195 5.1 Poisson’s Mismatch 196 5.1.1 Interlaminar Force 196 5.1.2 Interlaminar Moment 197 5.2 Coefficient of Mutual Influence . 204 5.2.1 Interlaminar Stress due to Mutual Influence 207 Suggested Problems 212 6 Computational Micromechanics 215 6.1 Analytical Homogenization . 216 6.1.1 Reuss Model . 216 6.1.2 Voigt Model 217 6.1.3 Periodic Microstructure Model . 217 6.1.4 Transversely Isotropic Averaging 218 6.2 Numerical Homogenization . 220 6.3 Local-Global Analysis 238 6.4 Laminated RVE 241 Suggested Problems 247 7 Viscoelasticity 249 7.1 Viscoelastic Models 251 7.1.1 Maxwell Model 251 7.1.2 Kelvin Model . 252 7.1.3 Standard Linear Solid 253x Finite Element Analysis of Composite Materials 7.1.4 Maxwell-Kelvin Model 253 7.1.5 Power Law 254 7.1.6 Prony Series . 254 7.1.7 Standard Nonlinear Solid 256 7.1.8 Nonlinear Power Law 256 7.2 Boltzmann Superposition 258 7.2.1 Linear Viscoelastic Material . 258 7.2.2 Unaging Viscoelastic Material 259 7.3 Correspondence Principle 260 7.4 Frequency Domain 261 7.5 Spectrum Representation 262 7.6 Micromechanics of Viscoelastic Composites 262 7.6.1 One-Dimensional Case 262 7.6.2 Three-Dimensional Case . 264 7.7 Macromechanics of Viscoelastic Composites 269 7.7.1 Balanced Symmetric Laminates . 269 7.7.2 General Laminates 269 7.8 FEA of Viscoelastic Composites . 269 Suggested Problems 280 8 Continuum Damage Mechanics 283 8.1 One-Dimensional Damage Mechanics 284 8.1.1 Damage Variable . 284 8.1.2 Damage Threshold and Activation Function 286 8.1.3 Kinetic Equation . 287 8.1.4 Statistical Interpretation of the Kinetic Equation . 288 8.1.5 One-Dimensional Random-Strength Model 289 8.1.6 Fiber-Direction, Tension Damage 294 8.1.7 Fiber-Direction, Compression Damage . 300 8.2 Multidimensional Damage and Effective Spaces 304 8.3 Thermodynamics Formulation 305 8.3.1 First Law . 306 8.3.2 Second Law 307 8.4 Kinetic Law in Three-Dimensional Space 313 8.4.1 Return-Mapping Algorithm . 316 8.5 Damage and Plasticity 322 Suggested Problems 324 9 Discrete Damage Mechanics 327 9.1 Overview . 328 9.2 Approximations 332 9.3 Lamina Constitutive Equation . 333 9.4 Displacement Field 334 9.4.1 Boundary Conditions for ΔT = 0 335 9.4.2 Boundary Conditions for ΔT = 0 336Table of Contents xi 9.5 Degraded Laminate Stiffness and CTE . 337 9.6 Degraded Lamina Stiffness 338 9.7 Fracture Energy . 339 9.8 Solution Algorithm 340 9.8.1 Lamina Iterations 340 9.8.2 Laminate Iterations . 340 Suggested Problems 351 10 Delaminations 353 10.1 Cohesive Zone Method 356 10.1.1 Single Mode Cohesive Model 358 10.1.2 Mixed Mode Cohesive Model 361 10.2 Virtual Crack Closure Technique 371 Suggested Problems 375 A Tensor Algebra 377 A.1 Principal Directions of Stress and Strain 377 A.2 Tensor Symmetry . 377 A.3 Matrix Representation of a Tensor . 378 A.4 Double Contraction 379 A.5 Tensor Inversion . 379 A.6 Tensor Differentiation 380 A.6.1 Derivative of a Tensor with Respect to Itself . 380 A.6.2 Derivative of the Inverse of a Tensor with Respect to the Tensor 381 B Second-Order Diagonal Damage Models 383 B.1 Effective and Damaged Spaces . 383 B.2 Thermodynamic Force Y 384 B.3 Damage Surface 386 B.4 Unrecoverable-Strain Surface 387 C Software Used 389 C.1 Abaqus . 389 C.1.1 Abaqus Programmable Features . 391 C.2 BMI3 . 393 References 395 Index 40 List of Symbols Symbols Related to Mechanics of Orthotropic Materials Strain tensor εij Strain components in tensor notation α Strain components in contracted notation e α Elastic strain
pα Plastic strain λ Lame constant ν Poisson’s ratio ν12 In-plane Poisson’s ratio ν23, ν13 Interlaminar Poisson’s ratios ν xy Apparent laminate Poisson’s ratio x-y σ Stress tensor σij Stress components in tensor notation σα Stress components in contracted notation [a] Transformation matrix for vectors ei Unit vector components in global coordinates e i Unit vector components in materials coordinates fi, fij Tsai-Wu coefficients k Bulk modulus l, m, n Direction cosines u(εij) Strain energy per unit volume ui Displacement vector components xi Global directions or axes x i Materials directions or axes C Stiffness tensor Cijkl Stiffness in index notation Cα,β Stiffness in contracted notation E Young’s modulus E1 Longitudinal modulus E2 Transverse modulus E2 Transverse-thickness modulus Ex Apparent laminate modulus in the global x-direction G = μ Shear modulus G12 In-plane shear modulus G23, G13 Interlaminar shear moduli xxixxii Finite Element Analysis of Composite Materials G xy Apparent laminate shear modulus x-y Iij Second-order identity tensor Iijkl Fourth-order identity tensor Q ij Lamina stiffness components in lamina coordinates [R] Reuter matrix S Compliance tensor Sijkl Compliance in index notation Sα,β Compliance in contracted notation [T ] Coordinate transformation matrix for stress [T ] Coordinate transformation matrix for strain Symbols Related to Finite Element Analysis ∂ Strain-displacement equations in matrix form Six-element array of strain components θx, θy, θz Rotation angles following the right-hand rule (Figure 2.19) σ Six-element array of stress components φx, φy Rotation angles used in plate and shell theory a Nodal displacement array ue j Unknown parameters in the discretization B Strain-displacement matrix C Stiffness matrix K Assembled global stiffness matrix Ke Element stiffness matrix N Interpolation function array N e j Interpolation functions in the discretization P e Element force array P Assembled global force array Symbols Related to Elasticity and Strength of Laminates γxy 0 In-plane shear strain γ4u Ultimate interlaminar shear strain in the 2-3 plane γ5u Ultimate interlaminar shear strain in the 1-3 plane γ6u Ultimate in-plane shear strain 0 x, 0 y In-plane strains 1t Ultimate longitudinal tensile strain 2t Ultimate transverse tensile strain 3t Ultimate transverse-thickness tensile strain 1c Ultimate longitudinal compressive strain 2c Ultimate transverse compressive strain 3c Ultimate transverse-thickness compressive strain κx, κy Bending curvatures κ xy Twisting curvatureList of Symbols xxiii φx, φy Rotations of the middle surface of the shell (Figure 2.19) c4, c5, c6 Tsai-Wu coupling coefficients tk Lamina thickness u0, v0, w0 Displacements of the middle surface of the shell z Distance from the middle surface of the shell Aij Components of the extensional stiffness matrix [A] Bij Components of the bending-extension coupling matrix Dij Components of the bending stiffness matrix [D] [E0] Extensional stiffness matrix [A], in ANSYS notation [E1] Bending-extension matrix [b], in ANSYS notation [E2] Bending stiffness matrix [D], in ANSYS notation F1t Longitudinal tensile strength F2t Transverse tensile strength F3t Transverse-thickness tensile strength F1c Longitudinal compressive strength F2c Transverse compressive strength F3c Transverse-thickness compressive strength F4 Interlaminar shear strength in the 2-3 plane F5 Interlaminar shear strength in the 1-3 plane F6 In-plane shear strength Hij Components of the interlaminar shear matrix [H] IF Failure index Mx, My, Mxy Moments per unit length (Figure 3.3) Mn Applied bending moment per unit length Nx, Ny, Nxy In-plane forces per unit length (Figure 3.3) Nn Applied in-plane force per unit length, normal to the edge Nns Applied in-plane shear force per unit length, tangential Qijk Lamina stiffness components in laminate coordinates, layer k Vx, Vy Shear forces per unit length (Figure 3.3) Symbols Related to Buckling λ, λi Eigenvalues s Perturbation parameter Λ Load multiplier Λ(cr) Bifurcation multiplier or critical load multiplier Λ(1) Slope of the post-critical path Λ(2) Curvature of the post-critical path v Eigenvectors (buckling modes) [K] Stiffness matrix [Ks] Stress stiffness matrix PCR Critical loadxxiv Finite Element Analysis of Composite Materials Symbols Related to Free Edge Stresses ηxy,x, ηxy,y Coefficients of mutual influence ηx,xy, ηy,xy Alternate coefficients of mutual influence F yz Interlaminar shear force y-z Fxz Interlaminar shear force x-z Mz Interlaminar moment Symbols Related to Micromechanics α Average engineering strain components εij Average tensor strain components 0 α, ε0 ij Far-field applied strain components σα Average stress components Ai Strain concentration tensor, i-th phase, contracted notation 2a1, 2a2, 2a3 Dimensions of the RVE Aijkl Components of the strain concentration tensor Bi Stress concentration tensor, i-th phase, contracted notation Bijkl Components of the stress concentration tensor I 6 × 6 identity matrix Pijkl Eshelby tensor Vf Fiber volume fraction Vm Matrix volume fraction Symbols Related to Viscoelasticity ε˙ Stress rate η Viscosity θ Age or aging time σ˙ Stress rate τ Time constant of the material or system Γ Gamma function s Laplace variable t Time Cα,β(t) Stiffness tensor in the time domain Cα,β(s) Stiffness tensor in the Laplace domain Cα,β(s) Stiffness tensor in the Carson domain D(t) Compliance D0, (Di)0 Initial compliance values Dc(t) Creep component of the total compliance D(t) D, D Storage and loss compliances E0, (Ei)0 Initial moduli E∞ Equilibrium modulus E, E0, E1, E2 Parameters in the viscoelastic models (Figure 7.1) E(t) RelaxationList of Symbols xxv E, E Storage and loss moduli F [] Fourier transform (Gij)0 Initial shear moduli H(t − t0) Heaviside step function H(θ) Relaxation spectrum L[] Laplace transform L[]−1 Inverse Laplace transform Symbols Related to Damage α Laminate CTE α(k) CTE of lamina k αcr Critical misalignment angle at longitudinal compression failure ασ Standard deviation of fiber misalignment γ(δ) Damage hardening function γ0 Damage threshold δij Kronecker delta δ Damage hardening variable ε Effective strain ε Undamaged strain εp Plastic strain γ˙ Heat dissipation rate per unit volume γ˙ s Internal entropy production rate λ Crack density λlim Saturation crack density λ, ˙ λ˙ d Damage multiplier λ˙ p Yield multiplier ρ Density σ Effective stress σ Undamaged stress τ13, τ23 Intralaminar shear stress components ϕ, ϕ∗ Strain energy density, and complementary SED χ Gibbs energy density ψ Helmholtz free energy density ΔT Change in temperature Ω = Ωij Integrity tensor 2a0 Representative crack size di Eigenvalues of the damage tensor f d Damage flow surface f p Yield flow surface f(x), F (x) Probability density, and its cumulative probability g Damage activation function gd Damage surface gp Yield surface h Laminate thicknessxxvi Finite Element Analysis of Composite Materials hk Thickness of lamina k m Weibull modulus p Yield hardening variable p Thickness average of quantity p p Virgin value of quantity p p Volume average of quantity p q Hear flow vector per unit area r Radiation heat per unit mass s Specific entropy u(εij) Internal energy density A Crack area [A] Laminate in-plane stiffness matrix Aijkl Tension-compression damage constitutive tensor Bijkl Shear damage constitutive tensor Ba Dimensionless number (8.57) Cα,β Stiffness matrix in the undamaged configuration Ced Tangent stiffness tensor Dij Damage tensor Dcr 1t Critical damage at longitudinal tensile failure Dcr 1c Critical damage at longitudinal compression failure Dcr 2t Critical damage at transverse tensile failure D2, D6 Damage variables E(D) Effective modulus E Undamaged (virgin) modulus Gc = 2γc Surface energy GIc, GIIc Critical energy release rate in modes I and II Jijkl Normal damage constitutive tensor Mijkl Damage effect tensor N Number of laminas in the laminate {N} Membrane stress resultant array Q Degraded 3x3 stiffness matrix of the laminate R(p) Yield hardening function R0 Yield threshold S Entropy or Laminate complinace matrix, depending on context T Temperature U Strain energy V Volume of the RVE Yij Thermodynamic force tensor Symbols Related to Delaminations α Mixed mode crack propagation exponent βδ, βG Mixed mode ratios δ CZM separation of the interface δm Mixed mode separationList of Symbols xxvii δ0 m Mixed mode separation at damage onset δ0 m Mixed mode separation at fracture σ0 CZM critical separation at damage onset Delamination length for 2D delaminations σ0 CZM strength of the interface ψxi, ψyi Rotation of normals to the middle surface of the plate Ω Volume of the body ΩD Delaminated region Πe Potential energy, elastic Πr Potential energy, total ˙ Γ Dissipation rate Λ Interface strain energy density per unit area ∂Ω Boundary of the body d One-dimensional damage state variable k xy, kz Displacement continuity parameters [Ai], [Bi], [Di] Laminate stiffness sub-matrices DI, DII, DIII Damage variables for modes I, II, and III of CZM G() Energy release rate (ERR), total, in 2D G Energy release rate (ERR), total, in 3D GI, GII, GIII Energy release rate (ERR) of modes I, II, and III Gc Critical energy release rate (ERR), total, in 3D Gc I Critical energy release rate mode I [Hi] Laminate interlaminar shear stiffness matrix K Penalty stiffness K˜ Virgin penalty stiffness KI, KII, KIII Stress intensity factors (SIF) of modes I, II, and III Ni, Mi, Ti Stress resultants U Internal energy W Work done by the body on its surroundings Wclosure Crack closure work List of Examples Example 1.1, 7 Example 1.2, 11 Example 1.3, 11 Example 1.4, 28 Example 1.5, 30 Example 1.6, 31 Example 2.1, 46 Example 2.2, 47 Example 2.3, 54 Example 2.4, 75 Example 2.5, 77 Example 2.6, 79 Example 3.1, 108 Example 3.2, 113 Example 3.3, 116 Example 3.4, 121 Example 3.5, 130 Example 3.6, 136 Example 3.7, 139 Example 3.8, 151 Example 3.9, 153 Example 3.10, 157 Example 3.11, 159 Example 3.12, 167 Example 3.13, 168 Example 3.14, 171 Example 4.1, 179 Example 4.2, 185 Example 4.3, 188 Example 4.4, 191 Example 5.1, 199 Example 5.2, 199 Example 5.3, 207 Example 5.4, 209 Example 6.1, 219 Example 6.2, 226 Example 6.3, 236 Example 6.4, 240 Example 6.5, 243 Example 7.1, 257 Example 7.2, 259 Example 7.3, 263 Example 7.4, 267 Example 7.5, 269 Example 7.6, 271 Example 7.7, 272 Example 7.8, 276 Example 8.1, 288 Example 8.2, 292 Example 8.3, 296 Example 8.4, 311 Example 8.5, 317 Example 9.1, 341 Example 10.1, 364 Example 10.2, 368 Example 10.3, 373 كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Finite Element Analysis of Composite Materials Using Abaqus رابط مباشر لتنزيل كتاب Finite Element Analysis of Composite Materials Using Abaqus
|
|