Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Deep Learning Toolbox - User's Guide الثلاثاء 06 أكتوبر 2020, 11:22 am | |
|
أخوانى فى الله أحضرت لكم كتاب Deep Learning Toolbox - User's Guide Mark Hudson Beale Martin T. Hagan Howard B. Demuth
و المحتوى كما يلي :
Deep Networks Deep Learning in MATLAB 1-2 What Is Deep Learning? 1-2 Try Deep Learning in 10 Lines of MATLAB Code 1-4 Start Deep Learning Faster Using Transfer Learning 1-5 Train Classifiers Using Features Extracted from Pretrained Networks . 1-6 Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud Deep Learning with Big Data on GPUs and in Parallel 1-8 Training with Multiple GPUs . 1-9 Deep Learning in the Cloud 1-10 Fetch and Preprocess Data in Background . 1-10 Pretrained Deep Neural Networks . 1-12 Compare Pretrained Networks 1-12 Load Pretrained Networks . 1-14 Feature Extraction . 1-15 Transfer Learning 1-15 Import and Export Networks . 1-16 Learn About Convolutional Neural Networks 1-19 Multiple-Input and Multiple-Output Networks . 1-21 Multiple-Input Networks . 1-21 Multiple-Output Networks . 1-21 List of Deep Learning Layers . 1-23 Deep Learning Layers . 1-23 Specify Layers of Convolutional Neural Network . 1-30 Image Input Layer . 1-31 Convolutional Layer 1-31 Batch Normalization Layer . 1-35 ReLU Layer 1-35 Cross Channel Normalization (Local Response Normalization) Layer . 1-36 Max and Average Pooling Layers 1-36 Dropout Layer 1-37 Fully Connected Layer 1-37 Output Layers 1-38 Set Up Parameters and Train Convolutional Neural Network . 1-41 Specify Solver and Maximum Number of Epochs 1-41 Specify and Modify Learning Rate . 1-41 Specify Validation Data 1-42 v ContentsSelect Hardware Resource . 1-42 Save Checkpoint Networks and Resume Training 1-43 Set Up Parameters in Convolutional and Fully Connected Layers 1-43 Train Your Network 1-43 Deep Learning Tips and Tricks 1-45 Choose Network Architecture . 1-45 Choose Training Options 1-46 Improve Training Accuracy . 1-47 Fix Errors in Training . 1-48 Prepare and Preprocess Data . 1-49 Use Available Hardware . 1-51 Fix Errors With Loading from MAT-Files . 1-52 Long Short-Term Memory Networks 1-53 LSTM Network Architecture 1-53 Layers 1-56 Classification, Prediction, and Forecasting . 1-57 Sequence Padding, Truncation, and Splitting . 1-57 Normalize Sequence Data 1-60 Out-of-Memory Data 1-61 Visualization 1-61 LSTM Layer Architecture 1-61 Deep Network Designer 2 Transfer Learning with Deep Network Designer . 2-2 Build Networks with Deep Network Designer 2-15 Open App and Import Networks . 2-15 Create and Edit a Network . 2-17 Check Network 2-19 Train Network Using Deep Network Designer 2-20 Export Network . 2-20 Create Simple Sequence Classification Network Using Deep Network Designer 2-22 Generate MATLAB Code from Deep Network Designer 2-31 Generate MATLAB Code to Recreate Network Layers . 2-31 Generate MATLAB Code to Train Network . 2-31 Deep Learning with Images 3 Classify Webcam Images Using Deep Learning . 3-2 Train Deep Learning Network to Classify New Images . 3-6 vi ContentsTrain Residual Network for Image Classification . 3-13 Classify Image Using GoogLeNet 3-23 Extract Image Features Using Pretrained Network . 3-28 Transfer Learning Using AlexNet 3-33 Create Simple Deep Learning Network for Classification 3-40 Train Convolutional Neural Network for Regression 3-46 Train Network with Multiple Outputs 3-54 Convert Classification Network into Regression Network 3-66 Train Generative Adversarial Network (GAN) 3-72 Train Conditional Generative Adversarial Network (CGAN) 3-83 Train a Siamese Network to Compare Images . 3-96 Train a Siamese Network for Dimensionality Reduction 3-110 Train Variational Autoencoder (VAE) to Generate Images . 3-124 Deep Learning with Time Series, Sequences, and Text 4 Sequence Classification Using Deep Learning 4-2 Time Series Forecasting Using Deep Learning 4-9 Speech Command Recognition Using Deep Learning . 4-17 Sequence-to-Sequence Classification Using Deep Learning 4-34 Sequence-to-Sequence Regression Using Deep Learning 4-39 Classify Videos Using Deep Learning . 4-48 Sequence-to-Sequence Classification Using 1-D Convolutions 4-58 Classify Text Data Using Deep Learning 4-74 Classify Text Data Using Convolutional Neural Network . 4-82 Multilabel Text Classification Using Deep Learning . 4-91 Sequence-to-Sequence Translation Using Attention . 4-111 viiGenerate Text Using Deep Learning 4-131 Pride and Prejudice and MATLAB 4-137 Word-By-Word Text Generation Using Deep Learning 4-143 Image Captioning Using Attention . 4-149 Deep Learning Tuning and Visualization 5 Deep Dream Images Using GoogLeNet 5-2 Grad-CAM Reveals the Why Behind Deep Learning Decisions . 5-8 Understand Network Predictions Using Occlusion 5-12 Investigate Classification Decisions Using Gradient Attribution Techniques 5-19 Resume Training from Checkpoint Network . 5-30 Deep Learning Using Bayesian Optimization 5-34 Run Multiple Deep Learning Experiments in Parallel . 5-44 Monitor Deep Learning Training Progress 5-49 Customize Output During Deep Learning Network Training 5-53 Investigate Network Predictions Using Class Activation Mapping . 5-57 View Network Behavior Using tsne 5-63 Visualize Activations of a Convolutional Neural Network 5-75 Visualize Activations of LSTM Network . 5-86 Visualize Features of a Convolutional Neural Network 5-90 Visualize Image Classifications Using Maximal and Minimal Activating Images . 5-97 Monitor GAN Training Progress and Identify Common Failure Modes 5-124 Convergence Failure . 5-124 Mode Collapse . 5-126 viii ContentsManage Deep Learning Experiments 6 Create a Deep Learning Experiment for Classification . 6-2 Create a Deep Learning Experiment for Regression . 6-7 Evaluate Deep Learning Experiments by Using Metric Functions . 6-12 Try Multiple Pretrained Networks for Transfer Learning 6-17 Experiment with Weight Initializers for Transfer Learning . 6-20 Deep Learning in Parallel and the Cloud 7 Scale Up Deep Learning in Parallel and in the Cloud . 7-2 Deep Learning on Multiple GPUs . 7-2 Deep Learning in the Cloud . 7-3 Advanced Support for Fast Multi-Node GPU Communication . 7-4 Deep Learning with MATLAB on Multiple GPUs . 7-5 Select Particular GPUs to Use for Training 7-5 Train Network in the Cloud Using Automatic Parallel Support . 7-5 Train Network in the Cloud Using Automatic Parallel Support 7-10 Use parfeval to Train Multiple Deep Learning Networks . 7-14 Send Deep Learning Batch Job to Cluster . 7-21 Train Network Using Automatic Multi-GPU Support 7-24 Use parfor to Train Multiple Deep Learning Networks 7-28 Upload Deep Learning Data to the Cloud . 7-35 Train Network in Parallel with Custom Training Loop . 7-37 Computer Vision Examples 8 Point Cloud Classification Using PointNet Deep Learning 8-2 Import Pretrained ONNX YOLO v2 Object Detector . 8-25 Export YOLO v2 Object Detector to ONNX 8-31 ixObject Detection Using SSD Deep Learning . 8-37 Object Detection Using YOLO v3 Deep Learning . 8-46 Object Detection Using YOLO v2 Deep Learning . 8-64 Semantic Segmentation Using Deep Learning . 8-74 Semantic Segmentation Using Dilated Convolutions 8-90 Semantic Segmentation of Multispectral Images Using Deep Learning . 8-95 3-D Brain Tumor Segmentation Using Deep Learning 8-112 Define Custom Pixel Classification Layer with Tversky Loss . 8-124 Train Object Detector Using R-CNN Deep Learning 8-131 Object Detection Using Faster R-CNN Deep Learning 8-145 Image Processing Examples 9 Remove Noise from Color Image Using Pretrained Neural Network 9-2 Single Image Super-Resolution Using Deep Learning 9-8 JPEG Image Deblocking Using Deep Learning . 9-23 Image Processing Operator Approximation Using Deep Learning . 9-36 Deep Learning Classification of Large Multiresolution Images . 9-51 Generate Image from Segmentation Map Using Deep Learning . 9-72 Neural Style Transfer Using Deep Learning . 9-91 Automated Driving Examples 10 Train a Deep Learning Vehicle Detector 10-2 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation . 10-11 x ContentsSignal Processing Examples 11 Radar Waveform Classification Using Deep Learning . 11-2 Pedestrian and Bicyclist Classification Using Deep Learning 11-15 Label QRS Complexes and R Peaks of ECG Signals Using Deep Network 11-32 Waveform Segmentation Using Deep Learning . 11-42 Modulation Classification with Deep Learning 11-60 Classify ECG Signals Using Long Short-Term Memory Networks . 11-76 Classify Time Series Using Wavelet Analysis and Deep Learning . 11-93 Audio Examples 12 Train Generative Adversarial Network (GAN) for Sound Synthesis 12-2 Sequential Feature Selection for Audio Features 12-21 Acoustic Scene Recognition Using Late Fusion . 12-34 Keyword Spotting in Noise Using MFCC and LSTM Networks . 12-55 Speech Emotion Recognition 12-77 Spoken Digit Recognition with Wavelet Scattering and Deep Learning 12-89 Cocktail Party Source Separation Using Deep Learning Networks . 12-107 Voice Activity Detection in Noise Using Deep Learning 12-129 Denoise Speech Using Deep Learning Networks . 12-152 Classify Gender Using LSTM Networks . 12-173 Reinforcement Learning Examples 13 Create Simulink Environment and Train Agent 13-2 xiTrain DDPG Agent to Swing Up and Balance Pendulum with Image Observation 13-10 Create Agent Using Deep Network Designer and Train Using Image Observations . 13-18 Train DDPG Agent to Control Flying Robot . 13-30 Train Biped Robot to Walk Using Reinforcement Learning Agents . 13-36 Train DDPG Agent for Adaptive Cruise Control . 13-47 Train DQN Agent for Lane Keeping Assist Using Parallel Computing . 13-55 Train DDPG Agent for Path Following Control 13-63 Predictive Maintenance Examples 14 Chemical Process Fault Detection Using Deep Learning . 14-2 Automatic Differentiation 15 Define Custom Deep Learning Layers 15-2 Layer Templates . 15-2 Intermediate Layer Architecture . 15-5 Check Validity of Layer . 15-10 Include Layer in Network . 15-11 Output Layer Architecture 15-11 Define Custom Deep Learning Layer with Learnable Parameters . 15-17 Layer with Learnable Parameters Template . 15-18 Name the Layer 15-19 Declare Properties and Learnable Parameters . 15-19 Create Constructor Function 15-21 Create Forward Functions 15-22 Completed Layer . 15-24 GPU Compatibility 15-25 Check Validity of Layer Using checkLayer . 15-25 Include Custom Layer in Network . 15-25 Define Custom Deep Learning Layer with Multiple Inputs 15-28 Layer with Learnable Parameters Template . 15-28 Name the Layer 15-29 Declare Properties and Learnable Parameters . 15-30 Create Constructor Function 15-31 Create Forward Functions 15-32 Completed Layer . 15-35 xii ContentsGPU Compatibility 15-36 Check Validity of Layer with Multiple Inputs . 15-36 Use Custom Weighted Addition Layer in Network . 15-37 Define Custom Classification Output Layer . 15-39 Classification Output Layer Template 15-39 Name the Layer 15-40 Declare Layer Properties . 15-40 Create Constructor Function 15-41 Create Forward Loss Function . 15-42 Completed Layer . 15-43 GPU Compatibility 15-43 Check Output Layer Validity . 15-44 Include Custom Classification Output Layer in Network 15-44 Define Custom Weighted Classification Layer . 15-47 Classification Output Layer Template 15-47 Name the Layer 15-48 Declare Layer Properties . 15-49 Create Constructor Function 15-49 Create Forward Loss Function . 15-50 Completed Layer . 15-51 GPU Compatibility 15-52 Check Output Layer Validity . 15-53 Define Custom Regression Output Layer . 15-54 Regression Output Layer Template 15-54 Name the Layer 15-55 Declare Layer Properties . 15-55 Create Constructor Function 15-56 Create Forward Loss Function . 15-57 Completed Layer . 15-58 GPU Compatibility 15-59 Check Output Layer Validity . 15-59 Include Custom Regression Output Layer in Network 15-60 Specify Custom Layer Backward Function . 15-62 Create Custom Layer 15-62 Create Backward Function 15-63 Complete Layer 15-65 GPU Compatibility 15-66 Specify Custom Output Layer Backward Loss Function . 15-68 Create Custom Layer 15-68 Create Backward Loss Function 15-69 Complete Layer 15-70 GPU Compatibility 15-71 Check Custom Layer Validity 15-73 Check Layer Validity . 15-73 List of Tests . 15-74 Generated Data 15-75 Diagnostics . 15-76 Specify Custom Weight Initialization Function . 15-89 xiiiCompare Layer Weight Initializers 15-95 Assemble Network from Pretrained Keras Layers 15-101 Assemble Multiple-Output Network for Prediction . 15-106 Automatic Differentiation Background . 15-112 What Is Automatic Differentiation? . 15-112 Forward Mode 15-112 Reverse Mode 15-114 Use Automatic Differentiation In Deep Learning Toolbox 15-117 Custom Training and Calculations Using Automatic Differentiation . 15-117 Use dlgradient and dlfeval Together for Automatic Differentiation . 15-118 Derivative Trace . 15-118 Characteristics of Automatic Derivatives 15-119 Define Custom Training Loops, Loss Functions, and Networks 15-121 Define Custom Training Loops 15-121 Define Custom Networks 15-122 Specify Training Options in Custom Training Loop . 15-125 Solver Options 15-126 Learn Rate . 15-126 Plots 15-127 Verbose Output . 15-128 Mini-Batch Size . 15-129 Number of Epochs . 15-129 Validation 15-129 L2 Regularization 15-131 Gradient Clipping 15-131 Single CPU or GPU Training 15-132 Checkpoints 15-132 Train Network Using Custom Training Loop . 15-134 Update Batch Normalization Statistics in Custom Training Loop . 15-140 Make Predictions Using dlnetwork Object 15-146 Train Network Using Model Function 15-149 Update Batch Normalization Statistics Using Model Function 15-161 Make Predictions Using Model Function . 15-173 Train Network Using Cyclical Learn Rate for Snapshot Ensembling . 15-178 List of Functions with dlarray Support . 15-194 Deep Learning Toolbox Functions with dlarray Support . 15-194 MATLAB Functions with dlarray Support 15-196 Notable dlarray Behaviors . 15-203 xiv ContentsDeep Learning Data Preprocessing 16 Datastores for Deep Learning 16-2 Select Datastore . 16-2 Input Datastore for Training, Validation, and Inference 16-3 Specify Read Size and Mini-Batch Size 16-4 Transform and Combine Datastores 16-4 Use Datastore for Parallel Training and Background Dispatching 16-7 Preprocess Images for Deep Learning 16-8 Resize Images Using Rescaling and Cropping . 16-8 Augment Images for Training with Random Geometric Transformations . 16-9 Perform Additional Image Processing Operations Using Built-In Datastores 16-10 Apply Custom Image Processing Pipelines Using Combine and Transform 16-10 Preprocess Volumes for Deep Learning 16-12 Read Volumetric Data 16-12 Associate Image and Label Data 16-15 Preprocess Volumetric Data . 16-15 Preprocess Data for Domain-Specific Deep Learning Applications 16-19 Image Processing Applications . 16-19 Object Detection 16-21 Semantic Segmentation 16-22 Signal Processing Applications . 16-23 Audio Processing Applications . 16-25 Text Analytics 16-27 Develop Custom Mini-Batch Datastore 16-28 Overview . 16-28 Implement MiniBatchable Datastore . 16-28 Add Support for Shuffling . 16-32 Validate Custom Mini-Batch Datastore . 16-32 Augment Images for Deep Learning Workflows Using Image Processing Toolbox 16-34 Augment Pixel Labels for Semantic Segmentation 16-57 Augment Bounding Boxes for Object Detection . 16-67 Prepare Datastore for Image-to-Image Regression 16-80 Train Network Using Out-of-Memory Sequence Data . 16-89 Train Network Using Custom Mini-Batch Datastore for Sequence Data 16-94 Classify Out-of-Memory Text Data Using Deep Learning 16-98 xvClassify Out-of-Memory Text Data Using Custom Mini-Batch Datastore . 16-104 Data Sets for Deep Learning . 16-108 Image Data Sets . 16-108 Time Series and Signal Data Sets 16-121 Video Data Sets . 16-130 Text Data Sets 16-131 Audio Data Sets . 16-136 Deep Learning Code Generation 17 Code Generation for Deep Learning Networks . 17-2 Code Generation for Semantic Segmentation Network . 17-10 Lane Detection Optimized with GPU Coder . 17-14 Code Generation for a Sequence-to-Sequence LSTM Network . 17-25 Deep Learning Prediction on ARM Mali GPU . 17-30 Code Generation for Object Detection by Using YOLO v2 . 17-33 Integrating Deep Learning with GPU Coder into Simulink 17-36 Deep Learning Prediction by Using NVIDIA TensorRT 17-42 Deep Learning Prediction by Using Different Batch Sizes . 17-46 Traffic Sign Detection and Recognition 17-50 Logo Recognition Network 17-58 Pedestrian Detection . 17-62 Code Generation for Denoising Deep Neural Network 17-69 Train and Deploy Fully Convolutional Networks for Semantic Segmentation . 17-73 Code Generation for Semantic Segmentation Network by Using U-net 17-84 Code Generation for Deep Learning on ARM Targets 17-91 Code Generation for Deep Learning on Raspberry Pi 17-96 Deep Learning Prediction with ARM Compute Using cnncodegen . 17-101 xvi ContentsDeep Learning Prediction with Intel MKL-DNN 17-104 Generate C++ Code for Object Detection Using YOLO v2 and Intel MKLDNN . 17-111 Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi 17-114 Neural Network Design Book Neural Network Objects, Data, and Training Styles 18 Workflow for Neural Network Design 18-2 Four Levels of Neural Network Design . 18-3 Neuron Model . 18-4 Simple Neuron 18-4 Transfer Functions . 18-5 Neuron with Vector Input 18-5 Neural Network Architectures 18-8 One Layer of Neurons . 18-8 Multiple Layers of Neurons . 18-10 Input and Output Processing Functions 18-11 Create Neural Network Object . 18-13 Configure Shallow Neural Network Inputs and Outputs 18-16 Understanding Shallow Network Data Structures . 18-18 Simulation with Concurrent Inputs in a Static Network 18-18 Simulation with Sequential Inputs in a Dynamic Network . 18-19 Simulation with Concurrent Inputs in a Dynamic Network 18-20 Neural Network Training Concepts . 18-22 Incremental Training with adapt 18-22 Batch Training . 18-24 Training Feedback 18-26 xviiMultilayer Shallow Neural Networks and Backpropagation Training 19 Multilayer Shallow Neural Networks and Backpropagation Training . 19-2 Multilayer Shallow Neural Network Architecture 19-3 Neuron Model (logsig, tansig, purelin) 19-3 Feedforward Neural Network . 19-4 Prepare Data for Multilayer Shallow Neural Networks 19-6 Choose Neural Network Input-Output Processing Functions . 19-7 Representing Unknown or Don't-Care Targets 19-8 Divide Data for Optimal Neural Network Training 19-9 Create, Configure, and Initialize Multilayer Shallow Neural Networks 19-11 Other Related Architectures . 19-11 Initializing Weights (init) . 19-12 Train and Apply Multilayer Shallow Neural Networks 19-13 Training Algorithms . 19-13 Training Example . 19-15 Use the Network . 19-17 Analyze Shallow Neural Network Performance After Training . 19-18 Improving Results 19-21 Limitations and Cautions . 19-22 Dynamic Neural Networks 20 Introduction to Dynamic Neural Networks 20-2 How Dynamic Neural Networks Work 20-3 Feedforward and Recurrent Neural Networks . 20-3 Applications of Dynamic Networks . 20-7 Dynamic Network Structures . 20-8 Dynamic Network Training . 20-9 Design Time Series Time-Delay Neural Networks . 20-10 Prepare Input and Layer Delay States 20-13 Design Time Series Distributed Delay Neural Networks 20-14 Design Time Series NARX Feedback Neural Networks . 20-16 Multiple External Variables 20-20 xviii ContentsDesign Layer-Recurrent Neural Networks . 20-22 Create Reference Model Controller with MATLAB Script . 20-24 Multiple Sequences with Dynamic Neural Networks . 20-29 Neural Network Time-Series Utilities . 20-30 Train Neural Networks with Error Weights . 20-32 Normalize Errors of Multiple Outputs . 20-35 Multistep Neural Network Prediction . 20-39 Set Up in Open-Loop Mode 20-39 Multistep Closed-Loop Prediction From Initial Conditions . 20-39 Multistep Closed-Loop Prediction Following Known Sequence . 20-40 Following Closed-Loop Simulation with Open-Loop Simulation . 20-41 Control Systems 21 Introduction to Neural Network Control Systems 21-2 Design Neural Network Predictive Controller in Simulink . 21-4 System Identification . 21-4 Predictive Control . 21-5 Use the Neural Network Predictive Controller Block 21-6 Design NARMA-L2 Neural Controller in Simulink . 21-13 Identification of the NARMA-L2 Model . 21-13 NARMA-L2 Controller . 21-14 Use the NARMA-L2 Controller Block 21-15 Design Model-Reference Neural Controller in Simulink 21-19 Use the Model Reference Controller Block 21-20 Import-Export Neural Network Simulink Control Systems 21-26 Import and Export Networks 21-26 Import and Export Training Data . 21-28 Radial Basis Neural Networks 22 Introduction to Radial Basis Neural Networks . 22-2 Important Radial Basis Functions 22-2 Radial Basis Neural Networks 22-3 Neuron Model 22-3 Network Architecture . 22-4 xixExact Design (newrbe) 22-5 More Efficient Design (newrb) 22-6 Examples 22-6 Probabilistic Neural Networks 22-8 Network Architecture . 22-8 Design (newpnn) 22-9 Generalized Regression Neural Networks 22-11 Network Architecture 22-11 Design (newgrnn) . 22-12 Self-Organizing and Learning Vector Quantization Networks 23 Introduction to Self-Organizing and LVQ . 23-2 Important Self-Organizing and LVQ Functions . 23-2 Cluster with a Competitive Neural Network . 23-3 Architecture 23-3 Create a Competitive Neural Network 23-3 Kohonen Learning Rule (learnk) . 23-4 Bias Learning Rule (learncon) . 23-5 Training . 23-5 Graphical Example . 23-6 Cluster with Self-Organizing Map Neural Network . 23-8 Topologies (gridtop, hextop, randtop) . 23-9 Distance Functions (dist, linkdist, mandist, boxdist) . 23-12 Architecture . 23-14 Create a Self-Organizing Map Neural Network (selforgmap) . 23-14 Training (learnsomb) 23-16 Examples . 23-17 Learning Vector Quantization (LVQ) Neural Networks . 23-26 Architecture . 23-26 Creating an LVQ Network . 23-27 LVQ1 Learning Rule (learnlv1) . 23-29 Training 23-30 Supplemental LVQ2.1 Learning Rule (learnlv2) . 23-31 Adaptive Filters and Adaptive Training 24 Adaptive Neural Network Filters 24-2 Adaptive Functions . 24-2 Linear Neuron Model . 24-2 Adaptive Linear Network Architecture 24-3 Least Mean Square Error 24-5 xx ContentsLMS Algorithm (learnwh) 24-6 Adaptive Filtering (adapt) 24-6 Advanced Topics 25 Neural Networks with Parallel and GPU Computing 25-2 Deep Learning 25-2 Modes of Parallelism . 25-2 Distributed Computing 25-2 Single GPU Computing 25-4 Distributed GPU Computing 25-6 Parallel Time Series 25-7 Parallel Availability, Fallbacks, and Feedback . 25-8 Optimize Neural Network Training Speed and Memory . 25-10 Memory Reduction 25-10 Fast Elliot Sigmoid 25-10 Choose a Multilayer Neural Network Training Function 25-14 SIN Data Set 25-15 PARITY Data Set 25-16 ENGINE Data Set . 25-18 CANCER Data Set 25-19 CHOLESTEROL Data Set . 25-21 DIABETES Data Set . 25-22 Summary . 25-24 Improve Shallow Neural Network Generalization and Avoid Overfitting 25-25 Retraining Neural Networks . 25-26 Multiple Neural Networks 25-27 Early Stopping . 25-28 Index Data Division (divideind) . 25-28 Random Data Division (dividerand) 25-29 Block Data Division (divideblock) . 25-29 Interleaved Data Division (divideint) . 25-29 Regularization . 25-29 Summary and Discussion of Early Stopping and Regularization 25-31 Posttraining Analysis (regression) . 25-33 Edit Shallow Neural Network Properties . 25-35 Custom Network . 25-35 Network Definition 25-36 Network Behavior 25-43 Custom Neural Network Helper Functions . 25-45 Automatically Save Checkpoints During Neural Network Training . 25-46 Deploy Shallow Neural Network Functions . 25-48 Deployment Functions and Tools for Trained Networks . 25-48 xxiGenerate Neural Network Functions for Application Deployment . 25-48 Generate Simulink Diagrams 25-50 Deploy Training of Shallow Neural Networks . 25-51 Historical Neural Networks 26 Historical Neural Networks Overview 26-2 Perceptron Neural Networks . 26-3 Neuron Model 26-3 Perceptron Architecture . 26-4 Create a Perceptron 26-5 Perceptron Learning Rule (learnp) . 26-6 Training (train) 26-8 Limitations and Cautions . 26-12 Linear Neural Networks 26-14 Neuron Model . 26-14 Network Architecture 26-15 Least Mean Square Error . 26-17 Linear System Design (newlind) 26-18 Linear Networks with Delays 26-18 LMS Algorithm (learnwh) . 26-20 Linear Classification (train) . 26-21 Limitations and Cautions . 26-23 Neural Network Object Reference 27 Neural Network Object Properties . 27-2 General . 27-2 Architecture 27-2 Subobject Structures . 27-5 Functions 27-6 Weight and Bias Values 27-9 Neural Network Subobject Properties . 27-11 Inputs . 27-11 Layers . 27-12 Outputs 27-16 Biases . 27-18 Input Weights 27-19 Layer Weights . 27-20 xxii ContentsFunction Approximation, Clustering, and Control Examples 28 Body Fat Estimation 28-2 Crab Classification 28-9 Wine Classification 28-17 Cancer Detection 28-24 Character Recognition . 28-32 Train Stacked Autoencoders for Image Classification 28-36 Iris Clustering 28-45 Gene Expression Analysis . 28-53 Maglev Modeling 28-61 Competitive Learning 28-71 One-Dimensional Self-organizing Map 28-74 Two-Dimensional Self-organizing Map 28-76 Radial Basis Approximation . 28-79 Radial Basis Underlapping Neurons 28-83 Radial Basis Overlapping Neurons . 28-85 GRNN Function Approximation 28-87 PNN Classification . 28-91 Learning Vector Quantization . 28-95 Linear Prediction Design . 28-98 Adaptive Linear Prediction . 28-102 Classification with a 2-Input Perceptron 28-106 Outlier Input Vectors . 28-111 Normalized Perceptron Rule . 28-117 Linearly Non-separable Vectors . 28-123 Pattern Association Showing Error Surface . 28-126 xxiiiTraining a Linear Neuron 28-129 Linear Fit of Nonlinear Problem 28-132 Underdetermined Problem . 28-136 Linearly Dependent Problem . 28-140 Too Large a Learning Rate . 28-141 Adaptive Noise Cancellation 28-145 Shallow Neural Networks Bibliography 29 Shallow Neural Networks Bibliography . 29-2 Mathematical Notation A Mathematics and Code Equivalents . A-2 Mathematics Notation to MATLAB Notation . A-2 Figure Notation A-2 Neural Network Blocks for the Simulink Environment B Neural Network Simulink Block Library . B-2 Transfer Function Blocks . B-2 Net Input Blocks . B-3 Weight Blocks . B-3 Processing Blocks B-3 Deploy Shallow Neural Network Simulink Diagrams . B-5 Example B-5 Suggested Exercises B-7 Generate Functions and Objects B-7 xxiv ContentsCode Notes Deep Learning Toolbox Data Conventions C-2 Dimensions . C-2 Variables . C-2
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Deep Learning Toolbox - User's Guide رابط مباشر لتنزيل كتاب Deep Learning Toolbox - User's Guide
|
|