كتاب Deep Learning Toolbox - User's Guide
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Deep Learning Toolbox - User's Guide

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Deep Learning Toolbox - User's Guide  Empty
مُساهمةموضوع: كتاب Deep Learning Toolbox - User's Guide    كتاب Deep Learning Toolbox - User's Guide  Emptyالثلاثاء 06 أكتوبر 2020, 11:22 am

أخوانى فى الله
أحضرت لكم كتاب
Deep Learning Toolbox - User's Guide
Mark Hudson Beale
Martin T. Hagan
Howard B. Demuth  

كتاب Deep Learning Toolbox - User's Guide  M_d_l_11
و المحتوى كما يلي :


Deep Networks
Deep Learning in MATLAB 1-2
What Is Deep Learning? 1-2
Try Deep Learning in 10 Lines of MATLAB Code 1-4
Start Deep Learning Faster Using Transfer Learning 1-5
Train Classifiers Using Features Extracted from Pretrained Networks . 1-6
Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud
Deep Learning with Big Data on GPUs and in Parallel 1-8
Training with Multiple GPUs . 1-9
Deep Learning in the Cloud 1-10
Fetch and Preprocess Data in Background . 1-10
Pretrained Deep Neural Networks . 1-12
Compare Pretrained Networks 1-12
Load Pretrained Networks . 1-14
Feature Extraction . 1-15
Transfer Learning 1-15
Import and Export Networks . 1-16
Learn About Convolutional Neural Networks 1-19
Multiple-Input and Multiple-Output Networks . 1-21
Multiple-Input Networks . 1-21
Multiple-Output Networks . 1-21
List of Deep Learning Layers . 1-23
Deep Learning Layers . 1-23
Specify Layers of Convolutional Neural Network . 1-30
Image Input Layer . 1-31
Convolutional Layer 1-31
Batch Normalization Layer . 1-35
ReLU Layer 1-35
Cross Channel Normalization (Local Response Normalization) Layer . 1-36
Max and Average Pooling Layers 1-36
Dropout Layer 1-37
Fully Connected Layer 1-37
Output Layers 1-38
Set Up Parameters and Train Convolutional Neural Network . 1-41
Specify Solver and Maximum Number of Epochs 1-41
Specify and Modify Learning Rate . 1-41
Specify Validation Data 1-42
v
ContentsSelect Hardware Resource . 1-42
Save Checkpoint Networks and Resume Training 1-43
Set Up Parameters in Convolutional and Fully Connected Layers 1-43
Train Your Network 1-43
Deep Learning Tips and Tricks 1-45
Choose Network Architecture . 1-45
Choose Training Options 1-46
Improve Training Accuracy . 1-47
Fix Errors in Training . 1-48
Prepare and Preprocess Data . 1-49
Use Available Hardware . 1-51
Fix Errors With Loading from MAT-Files . 1-52
Long Short-Term Memory Networks 1-53
LSTM Network Architecture 1-53
Layers 1-56
Classification, Prediction, and Forecasting . 1-57
Sequence Padding, Truncation, and Splitting . 1-57
Normalize Sequence Data 1-60
Out-of-Memory Data 1-61
Visualization 1-61
LSTM Layer Architecture 1-61
Deep Network Designer
2
Transfer Learning with Deep Network Designer . 2-2
Build Networks with Deep Network Designer 2-15
Open App and Import Networks . 2-15
Create and Edit a Network . 2-17
Check Network 2-19
Train Network Using Deep Network Designer 2-20
Export Network . 2-20
Create Simple Sequence Classification Network Using Deep Network
Designer 2-22
Generate MATLAB Code from Deep Network Designer 2-31
Generate MATLAB Code to Recreate Network Layers . 2-31
Generate MATLAB Code to Train Network . 2-31
Deep Learning with Images
3
Classify Webcam Images Using Deep Learning . 3-2
Train Deep Learning Network to Classify New Images . 3-6
vi ContentsTrain Residual Network for Image Classification . 3-13
Classify Image Using GoogLeNet 3-23
Extract Image Features Using Pretrained Network . 3-28
Transfer Learning Using AlexNet 3-33
Create Simple Deep Learning Network for Classification 3-40
Train Convolutional Neural Network for Regression 3-46
Train Network with Multiple Outputs 3-54
Convert Classification Network into Regression Network 3-66
Train Generative Adversarial Network (GAN) 3-72
Train Conditional Generative Adversarial Network (CGAN) 3-83
Train a Siamese Network to Compare Images . 3-96
Train a Siamese Network for Dimensionality Reduction 3-110
Train Variational Autoencoder (VAE) to Generate Images . 3-124
Deep Learning with Time Series, Sequences, and Text
4
Sequence Classification Using Deep Learning 4-2
Time Series Forecasting Using Deep Learning 4-9
Speech Command Recognition Using Deep Learning . 4-17
Sequence-to-Sequence Classification Using Deep Learning 4-34
Sequence-to-Sequence Regression Using Deep Learning 4-39
Classify Videos Using Deep Learning . 4-48
Sequence-to-Sequence Classification Using 1-D Convolutions 4-58
Classify Text Data Using Deep Learning 4-74
Classify Text Data Using Convolutional Neural Network . 4-82
Multilabel Text Classification Using Deep Learning . 4-91
Sequence-to-Sequence Translation Using Attention . 4-111
viiGenerate Text Using Deep Learning 4-131
Pride and Prejudice and MATLAB 4-137
Word-By-Word Text Generation Using Deep Learning 4-143
Image Captioning Using Attention . 4-149
Deep Learning Tuning and Visualization
5
Deep Dream Images Using GoogLeNet 5-2
Grad-CAM Reveals the Why Behind Deep Learning Decisions . 5-8
Understand Network Predictions Using Occlusion 5-12
Investigate Classification Decisions Using Gradient Attribution
Techniques 5-19
Resume Training from Checkpoint Network . 5-30
Deep Learning Using Bayesian Optimization 5-34
Run Multiple Deep Learning Experiments in Parallel . 5-44
Monitor Deep Learning Training Progress 5-49
Customize Output During Deep Learning Network Training 5-53
Investigate Network Predictions Using Class Activation Mapping . 5-57
View Network Behavior Using tsne 5-63
Visualize Activations of a Convolutional Neural Network 5-75
Visualize Activations of LSTM Network . 5-86
Visualize Features of a Convolutional Neural Network 5-90
Visualize Image Classifications Using Maximal and Minimal Activating
Images . 5-97
Monitor GAN Training Progress and Identify Common Failure Modes 5-124
Convergence Failure . 5-124
Mode Collapse . 5-126
viii ContentsManage Deep Learning Experiments
6
Create a Deep Learning Experiment for Classification . 6-2
Create a Deep Learning Experiment for Regression . 6-7
Evaluate Deep Learning Experiments by Using Metric Functions . 6-12
Try Multiple Pretrained Networks for Transfer Learning 6-17
Experiment with Weight Initializers for Transfer Learning . 6-20
Deep Learning in Parallel and the Cloud
7
Scale Up Deep Learning in Parallel and in the Cloud . 7-2
Deep Learning on Multiple GPUs . 7-2
Deep Learning in the Cloud . 7-3
Advanced Support for Fast Multi-Node GPU Communication . 7-4
Deep Learning with MATLAB on Multiple GPUs . 7-5
Select Particular GPUs to Use for Training 7-5
Train Network in the Cloud Using Automatic Parallel Support . 7-5
Train Network in the Cloud Using Automatic Parallel Support 7-10
Use parfeval to Train Multiple Deep Learning Networks . 7-14
Send Deep Learning Batch Job to Cluster . 7-21
Train Network Using Automatic Multi-GPU Support 7-24
Use parfor to Train Multiple Deep Learning Networks 7-28
Upload Deep Learning Data to the Cloud . 7-35
Train Network in Parallel with Custom Training Loop . 7-37
Computer Vision Examples
8
Point Cloud Classification Using PointNet Deep Learning 8-2
Import Pretrained ONNX YOLO v2 Object Detector . 8-25
Export YOLO v2 Object Detector to ONNX 8-31
ixObject Detection Using SSD Deep Learning . 8-37
Object Detection Using YOLO v3 Deep Learning . 8-46
Object Detection Using YOLO v2 Deep Learning . 8-64
Semantic Segmentation Using Deep Learning . 8-74
Semantic Segmentation Using Dilated Convolutions 8-90
Semantic Segmentation of Multispectral Images Using Deep Learning
. 8-95
3-D Brain Tumor Segmentation Using Deep Learning 8-112
Define Custom Pixel Classification Layer with Tversky Loss . 8-124
Train Object Detector Using R-CNN Deep Learning 8-131
Object Detection Using Faster R-CNN Deep Learning 8-145
Image Processing Examples
9
Remove Noise from Color Image Using Pretrained Neural Network 9-2
Single Image Super-Resolution Using Deep Learning 9-8
JPEG Image Deblocking Using Deep Learning . 9-23
Image Processing Operator Approximation Using Deep Learning . 9-36
Deep Learning Classification of Large Multiresolution Images . 9-51
Generate Image from Segmentation Map Using Deep Learning . 9-72
Neural Style Transfer Using Deep Learning . 9-91
Automated Driving Examples
10
Train a Deep Learning Vehicle Detector 10-2
Create Occupancy Grid Using Monocular Camera and Semantic
Segmentation . 10-11
x ContentsSignal Processing Examples
11
Radar Waveform Classification Using Deep Learning . 11-2
Pedestrian and Bicyclist Classification Using Deep Learning 11-15
Label QRS Complexes and R Peaks of ECG Signals Using Deep Network
11-32
Waveform Segmentation Using Deep Learning . 11-42
Modulation Classification with Deep Learning 11-60
Classify ECG Signals Using Long Short-Term Memory Networks . 11-76
Classify Time Series Using Wavelet Analysis and Deep Learning . 11-93
Audio Examples
12
Train Generative Adversarial Network (GAN) for Sound Synthesis 12-2
Sequential Feature Selection for Audio Features 12-21
Acoustic Scene Recognition Using Late Fusion . 12-34
Keyword Spotting in Noise Using MFCC and LSTM Networks . 12-55
Speech Emotion Recognition 12-77
Spoken Digit Recognition with Wavelet Scattering and Deep Learning
12-89
Cocktail Party Source Separation Using Deep Learning Networks . 12-107
Voice Activity Detection in Noise Using Deep Learning 12-129
Denoise Speech Using Deep Learning Networks . 12-152
Classify Gender Using LSTM Networks . 12-173
Reinforcement Learning Examples
13
Create Simulink Environment and Train Agent 13-2
xiTrain DDPG Agent to Swing Up and Balance Pendulum with Image
Observation 13-10
Create Agent Using Deep Network Designer and Train Using Image
Observations . 13-18
Train DDPG Agent to Control Flying Robot . 13-30
Train Biped Robot to Walk Using Reinforcement Learning Agents . 13-36
Train DDPG Agent for Adaptive Cruise Control . 13-47
Train DQN Agent for Lane Keeping Assist Using Parallel Computing . 13-55
Train DDPG Agent for Path Following Control 13-63
Predictive Maintenance Examples
14
Chemical Process Fault Detection Using Deep Learning . 14-2
Automatic Differentiation
15
Define Custom Deep Learning Layers 15-2
Layer Templates . 15-2
Intermediate Layer Architecture . 15-5
Check Validity of Layer . 15-10
Include Layer in Network . 15-11
Output Layer Architecture 15-11
Define Custom Deep Learning Layer with Learnable Parameters . 15-17
Layer with Learnable Parameters Template . 15-18
Name the Layer 15-19
Declare Properties and Learnable Parameters . 15-19
Create Constructor Function 15-21
Create Forward Functions 15-22
Completed Layer . 15-24
GPU Compatibility 15-25
Check Validity of Layer Using checkLayer . 15-25
Include Custom Layer in Network . 15-25
Define Custom Deep Learning Layer with Multiple Inputs 15-28
Layer with Learnable Parameters Template . 15-28
Name the Layer 15-29
Declare Properties and Learnable Parameters . 15-30
Create Constructor Function 15-31
Create Forward Functions 15-32
Completed Layer . 15-35
xii ContentsGPU Compatibility 15-36
Check Validity of Layer with Multiple Inputs . 15-36
Use Custom Weighted Addition Layer in Network . 15-37
Define Custom Classification Output Layer . 15-39
Classification Output Layer Template 15-39
Name the Layer 15-40
Declare Layer Properties . 15-40
Create Constructor Function 15-41
Create Forward Loss Function . 15-42
Completed Layer . 15-43
GPU Compatibility 15-43
Check Output Layer Validity . 15-44
Include Custom Classification Output Layer in Network 15-44
Define Custom Weighted Classification Layer . 15-47
Classification Output Layer Template 15-47
Name the Layer 15-48
Declare Layer Properties . 15-49
Create Constructor Function 15-49
Create Forward Loss Function . 15-50
Completed Layer . 15-51
GPU Compatibility 15-52
Check Output Layer Validity . 15-53
Define Custom Regression Output Layer . 15-54
Regression Output Layer Template 15-54
Name the Layer 15-55
Declare Layer Properties . 15-55
Create Constructor Function 15-56
Create Forward Loss Function . 15-57
Completed Layer . 15-58
GPU Compatibility 15-59
Check Output Layer Validity . 15-59
Include Custom Regression Output Layer in Network 15-60
Specify Custom Layer Backward Function . 15-62
Create Custom Layer 15-62
Create Backward Function 15-63
Complete Layer 15-65
GPU Compatibility 15-66
Specify Custom Output Layer Backward Loss Function . 15-68
Create Custom Layer 15-68
Create Backward Loss Function 15-69
Complete Layer 15-70
GPU Compatibility 15-71
Check Custom Layer Validity 15-73
Check Layer Validity . 15-73
List of Tests . 15-74
Generated Data 15-75
Diagnostics . 15-76
Specify Custom Weight Initialization Function . 15-89
xiiiCompare Layer Weight Initializers 15-95
Assemble Network from Pretrained Keras Layers 15-101
Assemble Multiple-Output Network for Prediction . 15-106
Automatic Differentiation Background . 15-112
What Is Automatic Differentiation? . 15-112
Forward Mode 15-112
Reverse Mode 15-114
Use Automatic Differentiation In Deep Learning Toolbox 15-117
Custom Training and Calculations Using Automatic Differentiation . 15-117
Use dlgradient and dlfeval Together for Automatic Differentiation . 15-118
Derivative Trace . 15-118
Characteristics of Automatic Derivatives 15-119
Define Custom Training Loops, Loss Functions, and Networks 15-121
Define Custom Training Loops 15-121
Define Custom Networks 15-122
Specify Training Options in Custom Training Loop . 15-125
Solver Options 15-126
Learn Rate . 15-126
Plots 15-127
Verbose Output . 15-128
Mini-Batch Size . 15-129
Number of Epochs . 15-129
Validation 15-129
L2 Regularization 15-131
Gradient Clipping 15-131
Single CPU or GPU Training 15-132
Checkpoints 15-132
Train Network Using Custom Training Loop . 15-134
Update Batch Normalization Statistics in Custom Training Loop . 15-140
Make Predictions Using dlnetwork Object 15-146
Train Network Using Model Function 15-149
Update Batch Normalization Statistics Using Model Function 15-161
Make Predictions Using Model Function . 15-173
Train Network Using Cyclical Learn Rate for Snapshot Ensembling . 15-178
List of Functions with dlarray Support . 15-194
Deep Learning Toolbox Functions with dlarray Support . 15-194
MATLAB Functions with dlarray Support 15-196
Notable dlarray Behaviors . 15-203
xiv ContentsDeep Learning Data Preprocessing
16
Datastores for Deep Learning 16-2
Select Datastore . 16-2
Input Datastore for Training, Validation, and Inference 16-3
Specify Read Size and Mini-Batch Size 16-4
Transform and Combine Datastores 16-4
Use Datastore for Parallel Training and Background Dispatching 16-7
Preprocess Images for Deep Learning 16-8
Resize Images Using Rescaling and Cropping . 16-8
Augment Images for Training with Random Geometric Transformations
. 16-9
Perform Additional Image Processing Operations Using Built-In Datastores
16-10
Apply Custom Image Processing Pipelines Using Combine and Transform
16-10
Preprocess Volumes for Deep Learning 16-12
Read Volumetric Data 16-12
Associate Image and Label Data 16-15
Preprocess Volumetric Data . 16-15
Preprocess Data for Domain-Specific Deep Learning Applications 16-19
Image Processing Applications . 16-19
Object Detection 16-21
Semantic Segmentation 16-22
Signal Processing Applications . 16-23
Audio Processing Applications . 16-25
Text Analytics 16-27
Develop Custom Mini-Batch Datastore 16-28
Overview . 16-28
Implement MiniBatchable Datastore . 16-28
Add Support for Shuffling . 16-32
Validate Custom Mini-Batch Datastore . 16-32
Augment Images for Deep Learning Workflows Using Image Processing
Toolbox 16-34
Augment Pixel Labels for Semantic Segmentation 16-57
Augment Bounding Boxes for Object Detection . 16-67
Prepare Datastore for Image-to-Image Regression 16-80
Train Network Using Out-of-Memory Sequence Data . 16-89
Train Network Using Custom Mini-Batch Datastore for Sequence Data
16-94
Classify Out-of-Memory Text Data Using Deep Learning 16-98
xvClassify Out-of-Memory Text Data Using Custom Mini-Batch Datastore
. 16-104
Data Sets for Deep Learning . 16-108
Image Data Sets . 16-108
Time Series and Signal Data Sets 16-121
Video Data Sets . 16-130
Text Data Sets 16-131
Audio Data Sets . 16-136
Deep Learning Code Generation
17
Code Generation for Deep Learning Networks . 17-2
Code Generation for Semantic Segmentation Network . 17-10
Lane Detection Optimized with GPU Coder . 17-14
Code Generation for a Sequence-to-Sequence LSTM Network . 17-25
Deep Learning Prediction on ARM Mali GPU . 17-30
Code Generation for Object Detection by Using YOLO v2 . 17-33
Integrating Deep Learning with GPU Coder into Simulink 17-36
Deep Learning Prediction by Using NVIDIA TensorRT 17-42
Deep Learning Prediction by Using Different Batch Sizes . 17-46
Traffic Sign Detection and Recognition 17-50
Logo Recognition Network 17-58
Pedestrian Detection . 17-62
Code Generation for Denoising Deep Neural Network 17-69
Train and Deploy Fully Convolutional Networks for Semantic
Segmentation . 17-73
Code Generation for Semantic Segmentation Network by Using U-net
17-84
Code Generation for Deep Learning on ARM Targets 17-91
Code Generation for Deep Learning on Raspberry Pi 17-96
Deep Learning Prediction with ARM Compute Using cnncodegen . 17-101
xvi ContentsDeep Learning Prediction with Intel MKL-DNN 17-104
Generate C++ Code for Object Detection Using YOLO v2 and Intel MKLDNN . 17-111
Code Generation and Deployment of MobileNet-v2 Network to Raspberry
Pi 17-114
Neural Network Design Book
Neural Network Objects, Data, and Training Styles
18
Workflow for Neural Network Design 18-2
Four Levels of Neural Network Design . 18-3
Neuron Model . 18-4
Simple Neuron 18-4
Transfer Functions . 18-5
Neuron with Vector Input 18-5
Neural Network Architectures 18-8
One Layer of Neurons . 18-8
Multiple Layers of Neurons . 18-10
Input and Output Processing Functions 18-11
Create Neural Network Object . 18-13
Configure Shallow Neural Network Inputs and Outputs 18-16
Understanding Shallow Network Data Structures . 18-18
Simulation with Concurrent Inputs in a Static Network 18-18
Simulation with Sequential Inputs in a Dynamic Network . 18-19
Simulation with Concurrent Inputs in a Dynamic Network 18-20
Neural Network Training Concepts . 18-22
Incremental Training with adapt 18-22
Batch Training . 18-24
Training Feedback 18-26
xviiMultilayer Shallow Neural Networks and Backpropagation
Training
19
Multilayer Shallow Neural Networks and Backpropagation Training . 19-2
Multilayer Shallow Neural Network Architecture 19-3
Neuron Model (logsig, tansig, purelin) 19-3
Feedforward Neural Network . 19-4
Prepare Data for Multilayer Shallow Neural Networks 19-6
Choose Neural Network Input-Output Processing Functions . 19-7
Representing Unknown or Don't-Care Targets 19-8
Divide Data for Optimal Neural Network Training 19-9
Create, Configure, and Initialize Multilayer Shallow Neural Networks
19-11
Other Related Architectures . 19-11
Initializing Weights (init) . 19-12
Train and Apply Multilayer Shallow Neural Networks 19-13
Training Algorithms . 19-13
Training Example . 19-15
Use the Network . 19-17
Analyze Shallow Neural Network Performance After Training . 19-18
Improving Results 19-21
Limitations and Cautions . 19-22
Dynamic Neural Networks
20
Introduction to Dynamic Neural Networks 20-2
How Dynamic Neural Networks Work 20-3
Feedforward and Recurrent Neural Networks . 20-3
Applications of Dynamic Networks . 20-7
Dynamic Network Structures . 20-8
Dynamic Network Training . 20-9
Design Time Series Time-Delay Neural Networks . 20-10
Prepare Input and Layer Delay States 20-13
Design Time Series Distributed Delay Neural Networks 20-14
Design Time Series NARX Feedback Neural Networks . 20-16
Multiple External Variables 20-20
xviii ContentsDesign Layer-Recurrent Neural Networks . 20-22
Create Reference Model Controller with MATLAB Script . 20-24
Multiple Sequences with Dynamic Neural Networks . 20-29
Neural Network Time-Series Utilities . 20-30
Train Neural Networks with Error Weights . 20-32
Normalize Errors of Multiple Outputs . 20-35
Multistep Neural Network Prediction . 20-39
Set Up in Open-Loop Mode 20-39
Multistep Closed-Loop Prediction From Initial Conditions . 20-39
Multistep Closed-Loop Prediction Following Known Sequence . 20-40
Following Closed-Loop Simulation with Open-Loop Simulation . 20-41
Control Systems
21
Introduction to Neural Network Control Systems 21-2
Design Neural Network Predictive Controller in Simulink . 21-4
System Identification . 21-4
Predictive Control . 21-5
Use the Neural Network Predictive Controller Block 21-6
Design NARMA-L2 Neural Controller in Simulink . 21-13
Identification of the NARMA-L2 Model . 21-13
NARMA-L2 Controller . 21-14
Use the NARMA-L2 Controller Block 21-15
Design Model-Reference Neural Controller in Simulink 21-19
Use the Model Reference Controller Block 21-20
Import-Export Neural Network Simulink Control Systems 21-26
Import and Export Networks 21-26
Import and Export Training Data . 21-28
Radial Basis Neural Networks
22
Introduction to Radial Basis Neural Networks . 22-2
Important Radial Basis Functions 22-2
Radial Basis Neural Networks 22-3
Neuron Model 22-3
Network Architecture . 22-4
xixExact Design (newrbe) 22-5
More Efficient Design (newrb) 22-6
Examples 22-6
Probabilistic Neural Networks 22-8
Network Architecture . 22-8
Design (newpnn) 22-9
Generalized Regression Neural Networks 22-11
Network Architecture 22-11
Design (newgrnn) . 22-12
Self-Organizing and Learning Vector Quantization Networks
23
Introduction to Self-Organizing and LVQ . 23-2
Important Self-Organizing and LVQ Functions . 23-2
Cluster with a Competitive Neural Network . 23-3
Architecture 23-3
Create a Competitive Neural Network 23-3
Kohonen Learning Rule (learnk) . 23-4
Bias Learning Rule (learncon) . 23-5
Training . 23-5
Graphical Example . 23-6
Cluster with Self-Organizing Map Neural Network . 23-8
Topologies (gridtop, hextop, randtop) . 23-9
Distance Functions (dist, linkdist, mandist, boxdist) . 23-12
Architecture . 23-14
Create a Self-Organizing Map Neural Network (selforgmap) . 23-14
Training (learnsomb) 23-16
Examples . 23-17
Learning Vector Quantization (LVQ) Neural Networks . 23-26
Architecture . 23-26
Creating an LVQ Network . 23-27
LVQ1 Learning Rule (learnlv1) . 23-29
Training 23-30
Supplemental LVQ2.1 Learning Rule (learnlv2) . 23-31
Adaptive Filters and Adaptive Training
24
Adaptive Neural Network Filters 24-2
Adaptive Functions . 24-2
Linear Neuron Model . 24-2
Adaptive Linear Network Architecture 24-3
Least Mean Square Error 24-5
xx ContentsLMS Algorithm (learnwh) 24-6
Adaptive Filtering (adapt) 24-6
Advanced Topics
25
Neural Networks with Parallel and GPU Computing 25-2
Deep Learning 25-2
Modes of Parallelism . 25-2
Distributed Computing 25-2
Single GPU Computing 25-4
Distributed GPU Computing 25-6
Parallel Time Series 25-7
Parallel Availability, Fallbacks, and Feedback . 25-8
Optimize Neural Network Training Speed and Memory . 25-10
Memory Reduction 25-10
Fast Elliot Sigmoid 25-10
Choose a Multilayer Neural Network Training Function 25-14
SIN Data Set 25-15
PARITY Data Set 25-16
ENGINE Data Set . 25-18
CANCER Data Set 25-19
CHOLESTEROL Data Set . 25-21
DIABETES Data Set . 25-22
Summary . 25-24
Improve Shallow Neural Network Generalization and Avoid Overfitting
25-25
Retraining Neural Networks . 25-26
Multiple Neural Networks 25-27
Early Stopping . 25-28
Index Data Division (divideind) . 25-28
Random Data Division (dividerand) 25-29
Block Data Division (divideblock) . 25-29
Interleaved Data Division (divideint) . 25-29
Regularization . 25-29
Summary and Discussion of Early Stopping and Regularization 25-31
Posttraining Analysis (regression) . 25-33
Edit Shallow Neural Network Properties . 25-35
Custom Network . 25-35
Network Definition 25-36
Network Behavior 25-43
Custom Neural Network Helper Functions . 25-45
Automatically Save Checkpoints During Neural Network Training . 25-46
Deploy Shallow Neural Network Functions . 25-48
Deployment Functions and Tools for Trained Networks . 25-48
xxiGenerate Neural Network Functions for Application Deployment . 25-48
Generate Simulink Diagrams 25-50
Deploy Training of Shallow Neural Networks . 25-51
Historical Neural Networks
26
Historical Neural Networks Overview 26-2
Perceptron Neural Networks . 26-3
Neuron Model 26-3
Perceptron Architecture . 26-4
Create a Perceptron 26-5
Perceptron Learning Rule (learnp) . 26-6
Training (train) 26-8
Limitations and Cautions . 26-12
Linear Neural Networks 26-14
Neuron Model . 26-14
Network Architecture 26-15
Least Mean Square Error . 26-17
Linear System Design (newlind) 26-18
Linear Networks with Delays 26-18
LMS Algorithm (learnwh) . 26-20
Linear Classification (train) . 26-21
Limitations and Cautions . 26-23
Neural Network Object Reference
27
Neural Network Object Properties . 27-2
General . 27-2
Architecture 27-2
Subobject Structures . 27-5
Functions 27-6
Weight and Bias Values 27-9
Neural Network Subobject Properties . 27-11
Inputs . 27-11
Layers . 27-12
Outputs 27-16
Biases . 27-18
Input Weights 27-19
Layer Weights . 27-20
xxii ContentsFunction Approximation, Clustering, and Control Examples
28
Body Fat Estimation 28-2
Crab Classification 28-9
Wine Classification 28-17
Cancer Detection 28-24
Character Recognition . 28-32
Train Stacked Autoencoders for Image Classification 28-36
Iris Clustering 28-45
Gene Expression Analysis . 28-53
Maglev Modeling 28-61
Competitive Learning 28-71
One-Dimensional Self-organizing Map 28-74
Two-Dimensional Self-organizing Map 28-76
Radial Basis Approximation . 28-79
Radial Basis Underlapping Neurons 28-83
Radial Basis Overlapping Neurons . 28-85
GRNN Function Approximation 28-87
PNN Classification . 28-91
Learning Vector Quantization . 28-95
Linear Prediction Design . 28-98
Adaptive Linear Prediction . 28-102
Classification with a 2-Input Perceptron 28-106
Outlier Input Vectors . 28-111
Normalized Perceptron Rule . 28-117
Linearly Non-separable Vectors . 28-123
Pattern Association Showing Error Surface . 28-126
xxiiiTraining a Linear Neuron 28-129
Linear Fit of Nonlinear Problem 28-132
Underdetermined Problem . 28-136
Linearly Dependent Problem . 28-140
Too Large a Learning Rate . 28-141
Adaptive Noise Cancellation 28-145
Shallow Neural Networks Bibliography
29
Shallow Neural Networks Bibliography . 29-2
Mathematical Notation
A
Mathematics and Code Equivalents . A-2
Mathematics Notation to MATLAB Notation . A-2
Figure Notation A-2
Neural Network Blocks for the Simulink Environment
B
Neural Network Simulink Block Library . B-2
Transfer Function Blocks . B-2
Net Input Blocks . B-3
Weight Blocks . B-3
Processing Blocks B-3
Deploy Shallow Neural Network Simulink Diagrams . B-5
Example B-5
Suggested Exercises B-7
Generate Functions and Objects B-7
xxiv ContentsCode Notes
Deep Learning Toolbox Data Conventions C-2
Dimensions . C-2
Variables . C-2  


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Deep Learning Toolbox - User's Guide
رابط مباشر لتنزيل كتاب Deep Learning Toolbox - User's Guide
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Deep Learning Toolbox - User's Guide
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Matlab - Deep Learning Toolbox - Getting Started Guide
» كتاب Deep Learning Toolbox Reference
» كتاب MATLAB - Deep Learning Toolbox - Reference
» كتاب MATLAB - Deep Learning Toolbox Reference
» كتاب MATLAB Statistics and Machine Learning Toolbox - User's Guide

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى شروحات البرامج الهندسية-
انتقل الى: