Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mechanics of Fluids الثلاثاء 06 أكتوبر 2020, 11:26 am | |
|
أخوانى فى الله أحضرت لكم كتاب Mechanics of Fluids Eighth edition Bernard Massey Reader Emeritus in Mechanical Engineering University College, London Revised by John Ward-Smith Formerly Senior Lecturer in Mechanical Engineering Brunel University
و المحتوى كما يلي :
Contents Preface to the eighth edition ix 1 Fundamental Concepts 1 1.1 The characteristics of fluids 1 1.2 Notation, dimensions, units and related matters 4 1.3 Properties of fluids 12 1.4 The perfect gas: equation of state 17 1.5 Compressibility 20 1.6 Viscosity 21 1.7 Surface tension 28 1.8 Basic characteristics of fluids in motion 30 1.9 Classification and description of fluid flow 33 1.10 The roles of experimentation and theory in fluid mechanics 38 1.11 Summary 41 Problems 41 2 Fluid Statics 43 2.1 Introduction 43 2.2 Variation of pressure with position in a fluid 43 2.3 The measurement of pressure 48 2.4 First and second moments of area 57 2.5 Hydrostatic thrusts on submerged surfaces 59 2.6 Buoyancy 69 2.7 The stability of bodies in fluids 71 2.8 Equilibrium of moving fluids 80 Problems 84 3 The Principles Governing Fluids in Motion 89 3.1 Introduction 89 3.2 Acceleration of a fluid particle 89 3.3 The continuity equation 90 3.4 Bernoulli’s equation 92 3.5 General energy equation for steady flow of any fluid 96vi Contents 3.6 Pressure variation perpendicular to streamlines 107 3.7 Simple applications of Bernoulli’s equation 109 Problems 131 4 The Momentum Equation 134 4.1 Introduction 134 4.2 The momentum equation for steady flow 134 4.3 Applications of the momentum equation 138 Problems 156 5 Physical Similarity and Dimensional Analysis 159 5.1 Introduction 159 5.2 Types of physical similarity 160 5.3 Ratios of forces arising in dynamic similarity 162 5.4 The principal dimensionless groups of fluid dynamics 167 5.5 Other dimensionless groups 167 5.6 Dimensional analysis 170 5.7 The application of dynamic similarity 179 5.8 Ship resistance 182 Problems 188 6 Laminar Flow Between Solid Boundaries 191 6.1 Introduction 191 6.2 Steady laminar flow in circular pipes: the Hagen–Poiseuille law 191 6.3 Steady laminar flow through an annulus 198 6.4 Steady laminar flow between parallel planes 199 6.5 Steady laminar flow between parallel planes, one of which is moving 204 6.6 The measurement of viscosity 210 6.7 Fundamentals of the theory of hydrodynamic lubrication 220 6.8 Laminar flow through porous media 239 Problems 242 7 Flow and Losses in Pipes and Fittings 245 7.1 Introduction 245 7.2 Flow in pipes of circular cross section 245 7.3 Variation of friction factor 249 7.4 Distribution of shear stress in a circular pipe 257 7.5 Friction in non-circular conduits 259 7.6 Other losses in pipes 260 7.7 Total head and pressure lines 271 7.8 Pipes in combination 277 7.9 Conditions near the pipe entry 283 7.10 Quasi-steady flow in pipes 284 7.11 Flow measurement 287 Problems 292Contents vii 8 Boundary Layers, Wakes and Other Shear Layers 298 8.1 Introduction 298 8.2 Description of the boundary layer 299 8.3 The thickness of the boundary layer 301 8.4 The momentum equation applied to the boundary layer 303 8.5 The laminar boundary layer on a flat plate with zero pressure gradient 306 8.6 The turbulent boundary layer on a smooth flat plate with zero pressure gradient 313 8.7 Friction drag for laminar and turbulent boundary layers together 317 8.8 Effect of pressure gradient 320 8.9 Boundary layer control 338 8.10 Effect of compressibility on drag 340 8.11 Eddy viscosity and the mixing length hypothesis 341 8.12 Velocity distribution in turbulent flow 344 8.13 Free turbulence 352 8.14 Computational fluid dynamics 353 Problems 358 9 The Flow of an Inviscid Fluid 361 9.1 Introduction 361 9.2 The stream function 362 9.3 Circulation and vorticity 364 9.4 Velocity potential 367 9.5 Flow nets 370 9.6 Basic patterns of flow 373 9.7 Combining flow patterns 383 9.8 Combinations of basic flow patterns 384 9.9 Functions of a complex variable 399 9.10 An introduction to elementary aerofoil theory 403 Problems 410 10 Flow with a Free Surface 414 10.1 Introduction 414 10.2 Types of flow in open channels 415 10.3 The steady-flow energy equation for open channels 416 10.4 Steady uniform flow – the Chézy equation 419 10.5 The boundary layer in open channels 423 10.6 Optimum shape of cross-section 425 10.7 Flow in closed conduits only partly full 426 10.8 Simple waves and surges in open channels 427 10.9 Specific energy and alternative depths of flow 431 10.10 The hydraulic jump 438 10.11 The occurrence of critical conditions 443 10.12 Gradually varied flow 456viii Contents 10.13 Oscillatory waves 464 10.14 Tsunamis 480 10.15 Conclusion 482 Problems 483 11 Compressible Flow of Gases 487 11.1 Introduction 487 11.2 Thermodynamic concepts 487 11.3 Energy equation with variable density: static and stagnation temperature 491 11.4 The speed of sound 493 11.5 Shock waves 499 11.6 Supersonic flow round a corner 512 11.7 The Pitot tube in compressible flow 517 11.8 Some general relations for one-dimensional flows 520 11.9 One-dimensional flow through nozzles 522 11.10 Compressible flow in pipes of constant cross-section 530 11.11 High-speed flow past an aerofoil 544 11.12 Analogy between compressible flow and flow with a free surface 546 11.13 Flow visualization 548 Problems 550 12 Unsteady Flow 554 12.1 Introduction 554 12.2 Inertia pressure 555 12.3 Pressure transients 558 12.4 Surge tanks 583 Problems 588 13 Fluid Machines 591 13.1 Introduction 591 13.2 Reciprocating pumps 592 13.3 Turbines 596 13.4 Rotodynamic pumps 625 13.5 Hydrodynamic transmissions 651 13.6 The effect of size on the efficiency of fluid machines 656 Problems 657 Appendix 1 Units and Conversion Factors 663 Appendix 2 Physical Constants and Properties of Fluids 667 Appendix 3 Tables of Gas Flow Functions 672 Appendix 4 Algebraic Symbols 679 Answers to Problems 685 Index 68 Index Absolute pressure 46 Absolute viscosity 24–6 Acceleration 81, 89 convective 90 of fluid particle 89–90 substantial 89 temporal 90 Acoustic velocity 493, 496 Actuator disc 151 Added mass 393 Adhesion 28 Adiabatic flow in pipe 531–7 Adiabatic frictionless conditions 522 Adiabatic process 19, 488 Adiabatic temperature lapse rate 79–80 Aerofoils 403–9 definitions 403 finite span 406–9 in high-speed flow 544–6 infinite span 404–6 separation 335–8 span of 403 vortex starting 405 Affinity laws for pumps 640 Air cavitation 620 Air locks 107 Airy waves 467 Alternative depths 432 Anemometer 288 Aneroid barometer 50 Angle of attack 403 Angle of heel 72 Angle of incidence 403 Angular velocity 9 Antinodes 478 Archimedes, Principle of 70 Area coefficient 580 Aspect ratio 403 Atmosphere equilibrium of 46–8, 79 stability of 79 (unit) 14 Atmospheric properties 670–1 Attitude angle (of bearing) 234 Avogadro’s hypothesis 18 Axial-flow machine 596 Axial-flow pumps 634–5 Axial-flow turbine 596, 607 Axi-symmetric flow 33 Backward difference 356 Backward-facing blades 629 Backwater curve 457, 462 Bar (unit) 9, 14 Barometer 49–50 Bearings inclined slipper 222–8 of infinite length 231 journal 230–9 very short 235 Bend-meter 290 Bends, losses in 266–8 Bernoulli constant 381 Bernoulli’s equation 92–6, 107, 391 applications 109–30 significance of terms in 95–6 Bingham plastic 197 Blade element theory 637 Blasius’s formula (friction in smooth pipes) 254 Blasius’s solution for laminar boundary layer 308–9 Bluff body 325 Boiling 16 Borda–Carnot head loss 262 Bore 428, 482 Boundary-element method (BEM) 356, 358 Boundary layer 298–352 control 338–9 definition 298 description of 299 displacement thickness 301 laminar 300, 306–9 momentum equation 303–6 momentum integral equation 306 momentum thickness 302 in open channels 423–4 transition region 299 see also Laminar boundary layer; Turbulent boundary layer Bourdon gauge 55–6 Boyle’s Law 490 Broad-crested weir 444–7 Bulk modulus of elasticity 20 Buoyancy 69–71 centre of 70, 72 Calorically perfect gas 18 Capillary depression, capillary rise 29 Capillary waves 183, 469 Cascade 267 Cauchy number 166 Cauchy–Riemann equations 400 Cavitation 16, 107, 619–22 in centrifugal pumps 643–4 damage 619–20690 Index Cavitation limits for reaction turbines 621 Cavitation number 170, 622 Celerity 563–4 Centipoise 26 Centistokes 26 Central difference 356 Centred expansion 514–5 Centre of buoyancy 70 Centre of pressure 61 Centrifugal pumps 626–7 basic equations 627–32 diffuser-type 627 volute-type 627 Centroid 57, 59 Centroidal axis 57 Changes of state 19–20 Characteristic curve (of pump) 631, 646 Characteristic equations 577–8 Characteristics 578 method of 577–80 Chézy equation 419–23 Chézy’s coefficient 421, 459 Chézy’s formula 459 Choking 107, 525, 535, 541 Chord (of aerofoil) 403 Chord line 403 Circulation 364–7 Classical hydrodynamics 361 Closed conduits only partly full 426–7 Coanda effect 108–9 Coefficient of contraction 114, 116 Coefficient of discharge 114, 168–70 for orifice 117 for venturi-meter 120 Coefficient of friction 227 Coefficient of velocity 114 Coefficient of viscosity 23 Cohesion 28 Colebrook’s equation 351 Complex potential 400 Complex variables 399–402 Compressibility (quantity) 20 Compressibility effects aerofoils 544 drag 340–1 elastic forces 166 Compressibility factor 518 Compressible flow of gases 487–550 Compressible fluids 20, 487, 517 Compressor 591 Computational fluid dynamics (CFD) 353–8 Conformal transformation 404 Conjugate depths 440 conjugate functions 399 Conservation of energy 95, 96–101 Conservation of matter 90 Continuity 90–2 Continuity equation 354, 458, 576 Continuum 4 Contraction, loss at abrupt 262–4 Control volume 139, 419 Convection, free 79 Convective acceleration 90 Convergent-divergent nozzle 522, 524–9 Conversion factors 663–6 Corresponding velocity 180 Couette flow 205 Creeping motion 331 Critical depth 432, 437 Critical flow 416 in open channel 432–5, 443–7 Critical pressure ratio 524 Critical Reynolds number 247, 317 Critical slope 435, 462 Critical velocity in open channel 435 Current meters 288 d’Alembert’s Paradox 392 Darcy’s equation 248, 531 Darcy’s Law (flow through porous media) 239 Dashpot 207–9 Deflection angle 506, 508 de Laval nozzle 523–4 Density 12 at a point 12 Design pressure ratio 527 Deviation angle 633 Differential equations, of fluid dynamics 354–6 Diffuser 264–5 in centrifugal pump 626 Diffuser pump 627 Dilatancy 27 Dilatant liquids 197 Dimensional analysis 170–9 application 179–82 methods 172 process 172–3 Dimensional formulae 11–2, 679–83 Dimensional homogeneity 12 Dipole 390 Discharge 114, 123 measurement of 290–1 Discretization errors 356–7 Dispersive waves 468 Displacement thickness of boundary layer 301–2 Displacement work 95–6 Double suction machine 627 Doublet 390–1, 402 Downdrop curve 457 Downwash velocity 407 Draft tube 608 Drag 324–35 form 324 induced 408 normal pressure 324 profile 324 vortex 407–9 wave 340 Drag coefficient 325, 637 of bodies of revolution 341 effect of compressibility 544–6 of three-dimensional bodies 331–5 of two-dimensional bodies 329–31 Drag force 290, 314, 325 Drain-hole vortex 379 Drowned weir 448–9 Dynamic pressure 110 Dynamic similarly 161–7 application 179–82 flow with elastic forces acting 166–7 flow with gravity forces acting 164–5 flow with surface tension forces acting 165–6 flow with viscous forces acting 163–4 principal ratios 167 ratios of forces arising in 162–7 Dynamic viscosity 23–6Index 691 Eccentricity 230 Eccentricity ratio 230 Eddy-making resistance 182 Eddy viscosity 341–3 Effective surface area 241 Efficiency of fluid machines, effect of size 656–7 Froude, of propeller 153 hydraulic, of turbine 611 manometric, of pump 629 overall, of pump 629 Elastic forces 162, 166 Elastic waves 493–7 Elbow-meter 290 Electro-magnetic meters 291 Elliptical lift distribution 408–9 Energy equation, steady flow 91–100, 103 Energy gradient 418–9 Energy transformations, in constant-density fluid 105–7 Energy transmission rate 473–4 Enlargement, loss at abrupt 260–2 Enthalpy 491 Entrainment 109, 352 Entropy, specific 489 Entry length 194, 283–4 Entry loss 263 Equation of motion oscillatory waves 464–71 Equation of state 17, 487 Equilibrium, relative 80 Equilibrium of fluid 45 of constant density 45–6 Equilibrium of moving fluids 80–3 Equipotential lines 368 Equivalent grain size 252 Euler head 629 Euler’s equation 94, 524 for steady, frictionless flow 522 Euler’s equation (energy transfer in machines) 610 Exit loss 262 Falling sphere method 212–3 Fanno flow 531–7 Fans 591, 625, 650 Filament line 32 Finite-difference methods 356 Finite-element methods 357–8 Finite-volume methods 358 First Law of Thermodynamics 97, 488 First moment of area 57–8 Floating bodies containing a liquid 76–8 stability of 72–8 Flow in closed conduits only partly full 426–7 compressible 487–550 cross-section 530–43 with free surface 346–7, 414–83 of inviscid fluid 361–409 to line sink 376 from line source 375–6 with variable density 346–7, 487–550 with variable density in pipes of constant 530–43 Flow direction, measurement 291–2 Flow field 30 Flowline 31 Flow measurement 287–92 Flow nets 370–3 applied to real fluids 372–3 Flow nozzle 123–5 Flow parameters, variation in time and space 30–1 Flow patterns 31–2 basic 373–82 combinations of basic 384–99 combining 383–4 Flow types 33–8 Reynold’s demonstration 33–5, 245–8 Flow visualization 548–50 Flow work 95–6 Fluid coupling 652–4 Fluid dynamics, differential equations of 354–6 Fluid flow, basic characteristics 30–3 Fluid flywheel 654 Fluidization 241–2 Fluid machines 591–657 effect of size on efficiency 656–7 Fluid motion, principles of 89–130 Fluid particle, acceleration of 89–90 Fluids characteristics 1–4 definition 1–2 properties of 12–17, 667 Fluid statics 43–83 Force(s) 9 acting from outside fluid 162 applied to obstacles in stream 442–3 caused by flow round pipe–bend 141–4 caused by jet striking surface 138–9 controlling behaviour of fluids 162 due to surface tension 162 at nozzle and reaction of jet 144–8 resulting from action of viscosity 162 on solid body in flowing fluid 148–50 Forced (rotational) vortex 381–2 Form drag 251, 324 Forward difference 356 Forward-facing blades 629 Fourier’s theorem 465 Francis turbine 596, 605–9 Free convection 79 Free discharge 452 Free jet 113 Free outfall 448–9 Free surface 45, 414–83 Free surface energy 472 Free turbulence 352–3 Free-vortex machines 611 Friction drag for laminar and turbulent boundary layers together 317–20 Friction factor 248–9, 534 for rough pipes 349–51 for smooth pipes 348–9 variation 249–55 Friction in non-circular conduits 259–60 Friction losses 568 Friction velocity 344692 Index Froude efficiency of propeller 153 Froude number 165, 167, 183, 416, 435 Froude’s theorem (for propeller) 152 Fully developed flow 192, 246, 283 Gas constant 17–8 Gases characteristics 2 compressible flow 487–548 Gas flow functions 672–9 Gate valve 570 Gauge pressure 13, 45 General energy equation, with variable density 491–2 Geometric similarity 160 Gibson’s inertia-pressure method 557 Gradually varied flow 456–63 equations 457–61 Gravitational energy 472 Gravity forces 164–5 Group velocity 474–6 Hagen–Poiseuille formula 191–4 Half body 386 Head, definition 45, 105 Head, manometric 629 Head losses in pipes 260–71 Head lost to friction 103, 248–9 Homologous series (of machines) 614 Hot-film anemometer 288 Hot-wire anemometer 288 Hydraulic efficiency 611 Hydraulic grade line 106, 272 Hydraulic jumps 438–42 types in rectangular channels 441–2 Hydraulic mean depth 259 Hydraulic radius 260 Hydrodynamic lubrication 220–39 Hydrodynamic mass 393 Hydrodynamic transmissions 651–6 Hydrostatic forces 419 Hydrostatic lubrication 220 Hydrostatic thrusts 60–7 on curved surfaces 65–7 horizontal component 65 on plane surface 60–3 resultant thrust 66–7 on submerged surfaces 59–69 vertical component 66 Ideal fluid 28 Impellers 592 free vortex design 635 mixed-flow pump 634 Impulse turbines 597 Inclined slipper bearings 222–8 Incompressible fluid 38 Induced drag 408 Induced mass 393 Inertia force 162–3 Inertia head 555 Inertia pressure 555–7 Inertia-pressure method 557 Interfacial tension 28 Interferometer technique 549 International standard atmosphere 670–1 Invert 419 Irrotational flow 366 Irrotational vortex 376–9, 401 Isentropic bulk modulus 20 Isentropic process 489, 522 Isobar 44 Isothermal bulk modulus 20 Isothermal flow in pipe 539–42 Isothermal process 19 Jet force due to, striking surface 138–41 free 352 reaction of 144–8 Jet propulsion 145–6 Journal bearing 230–9 Kaplan turbine 596, 607, 615 Kinematic eddy viscosity 342 Kinematic similarity 160–1 Kinematic viscosity 26, 669 Kinetic energy 472 Kinetic energy correction factor 100, 352 Kingsbury bearing 224 Kozeny–Carman equation 241 Kozeny constant 241 Kutta–Joukowski condition 405 Kutta–Joukowski law 337, 396 Laminar boundary layer approximate velocity distributions 312 Blasius’s solution 308, 309 on flat plate with zero pressure gradient 306–12 predicting separation in 322–3 thickness 309–11 Laminar flow 33–5 between parallel planes 199–209 between solid boundaries 191–242 in circular pipe 191–8, 543 distinguishing features 35 fully developed 193–5 non-Newtonian liquid in circular pipe 196–8 in pipes 191–8 through circular annulus 198–9 through porous media 239–42 Laminar sub-layer 251, 300, 347 Laplace’s equation 368, 400 Laser–Doppler anemometer 289 Laval nozzle 523–4 Laws of thermodynamics 487–91 Lift 403 Lift coefficient 403, 544, 637 Line of flow 31 Line sink 376 Line source 375, 401 Liquids, characteristics 2 Local acceleration 89 Logarithmic profile 346–7 Lower critical Reynolds number 247 Lower critical velocity 247 Lubrication hydrodynamic 220–39 hydrostatic 220Index 693 Mach angle 498 intersection 510–1 reflection 510 Mach cone 497–8 Mach line 498 Mach number 21, 166, 496, 501, 518 Mach waves 508 Mach–Zehnder interferometer 550 Magnus effect 395 Manning’s formula 422–3 Manning’s roughness coefficient 422 Manometers 50–5 Manometric efficiency 629 head 629 Mass flow parameter 521 Mean density 12 Mean steady flow 37 Metacentre 72 Metacentric height 73 Metacentric radius 75 Michell bearing 224 Micro-manometers 54 Micropoise 26 Mild slope 435 Millibar 14 Minor losses 260 Mixed-flow machines 596 Mixed-flow pump 634, 645 Mixing length 343 Molecular structure 3 Moment of inertia 59 Momentum correction factor 138 Momentum equation 134–54 applications 138–54 boundary layer 303–6 Momentum integral equation, boundary layer 306 Momentum theory propeller 150–4 wind turbine 154 Momentum thickness of boundary layer 302 Moody diagram 252 Moving fluids, equilibrium of 80–3 Multi-stage pumps 639 Nappe 126–7 Navier–Stokes equations 354–6 numerical procedures for solving 356–8 Net Positive Suction Head (NPSH) 644 Neutral equilibrium 71 Newtonian fluid 24 Newton’s First Law 92 Newton’s Law of Universal Gravitation 12 Newton’s laws of motion 138 Newton’s Second Law 14, 95, 134 Newton’s Third Law 22, 136, 440 Nikuradse’s experiments 250–2 Nodes 478–9 Non-Newtonian liquids 26–7 laminar flow in circular pipe 196–8 Non-uniform flow 30 Non-uniform velocity distribution effects 100, 138, 632–4 Normal depth 419 Normal flow 419 Normal shock waves 500–5 Notches 126–30 rectangular 127 V 129 Nozzle, force at 144–8 Numeric 5 Oblique shock waves 505–12 intersection 510–2 reflection 510–2 One-dimensional flow 32 with negligible friction 522–4 Open channels 414 boundary layer in 423–4 occurrence of critical conditions 443–54 optimum cross-section 425–6 simple waves and surges in 427–31 specific energy and alternative depths of flow 431–7 steady-flow energy equation for 416–8 types of flow 415–6 Orifice flow through sharp-edged 112–9, 268–9 quasi-steady flow through 119 submerged 118–9 Orifice meter 123–5 Oscillatory waves see Waves Oseen’s formula 331 Overturning couple 73 Parabolic velocity profile 193 Parallel axes theorem 59 Particle mechanics 332 Pascal (unit) 7, 9, 14 Pascal’s Law 15 Path-line 31 Pelton wheel 598–605 Percentage slip 596 Perfect gas 18, 489 Period of oscillation 77 Perpendicular axes theorem 59 Petroff’s law 233 Phase velocity 468 Physical constants 667 Physical similarity 159–70 see also specific types Piezo–electric gauges 56 Piezometer tube 45–6 Piezometric head 46 Piezometric pressure 46 Pipe bend force caused by flow round 141–4 head loss due to 266 Pipe fittings, losses in 267–8 Pipe networks 280–1 Pipe with side tappings 281–2 Pipes branched 278–80 in parallel 277–8 in series 277 Pi theorem 172 Pitometer 112 Pitot-static tube 110–2, 519 Pitot tube 110–2 in flow with variable density 517–20 Plasticity 27 Plastic solids 2 Poise 26 Poiseuille (unit) 25 Poiseuille’s equation 194694 Index Polar diagram 337 Porosity 239, 270 Positive-displacement machines 591 Potential flow 368 Prandtl-Meyer angle 515 Prandtl-Meyer expansion 515 Prandtl-von Kármán theory 343 Pressure 13–6 absolute 13, 46, 49 centre of 61–3 gauge 13, 45, 49 measurement of 48–57 piezometric 46 variation with position in fluid 43–8 Pressure coefficient 168 Pressure diagrams 565 Pressure drag 324 Pressure forces 162, 168 Pressure gauges 55–7 Pressure gradient 320–2 adverse 321 favourable 320–1 Pressure head 46 Pressure line 271–5 Pressure losses 245–55, 259, 260–71 Pressure transducer 57 Pressure transients 558–80 Pressure variation perpendicular to streamlines 107–8 Pressure waves 560 magnitude 560–4 velocity 560–4 Principle of conservation of mass 90–2 Profile drag 324 three-dimensional bodies 331–5 two-dimensional bodies 329–31 Propeller, momentum theory 150–4 Propeller turbine 607 Pseudo-plastic liquids 27, 197 Pumps 591, 625–51 characteristic curves for 644–5 performance characteristics 644–6 selection 650–1 Quasi-steady flow through orifice 119 through pipes 284–6 Radial blades 629 Radial-flow machine 596 Radial-flow turbine 605 Rankine–Hugoniot relation 502 Rankine oval 389 Rapid flow 416 approaching weir 449–51 in open channel 435 Rapidly varied flow 456 Rate of shear 23 Rayleigh step 228–9 Reaction turbine 597 cavitation limits for 621 net head across 607–9 Reciprocating pump 592–6 Rectilinear flow 374, 400–1 Region of influence 497–8 Relative density 13 Relative equilibrium 80 Restoring couple 72 Reversible adiabatic process 503 Reversible process 488 Reynolds number 35 local 137 significance of 163–4 Reynolds stress 342–3 Rheology 28 Rheopectic liquids 27 Rigid-body rotation 381 Ripples 469 Robins effect 396 Rocket propulsion 146–8 Rotameter 303 Rotational flow 366, 381 Rotodynamic machines 592 basic equations 609–13 Rotodynamic pumps 625–51 Rotor 592 Rough zone of flow 251 Runner 592 Salt-dilution method 291 Salt-velocity method 290 Saturation pressure 16 Saturation vapour pressure of water 667 Scale effect 182 Scale factor 160 Schlieren method 549 Secondary flow, losses due to 266 Second Law of Thermodynamics 441 Second moment of area 58–9 Seiches 479 Semi-perfect gas 19 Separation 320–1 from aerofoil 335–7 position of 339 predicting in laminar boundary layer 322–3 Separation point 321 Separation streamline 321 Shadowgraph method 548 Shear rate 23 Shear stress 1, 22, 191 distribution in circular pipe 257–8 Ship resistance 182–8 Shock 499 Shock losses 631 Shock phenomena 340 Shock stall 546 Shock wave 499–511 definition 499–500 intersection of 510–12 normal 499–505 oblique 505–11 reflection of 510–12 Shooting flow 435 SI units 6 internationally agreed names 6–7 prefixes for multiples and submultiples 8 Similarity 160 chemical 162 dynamic 161–7 geometric 160 kinematic 160–1 of machines 639–40 physical 159–60 thermal 161 Similarity laws pumps 639–40 turbines 613–7 Single suction pump 627 Singular point 375 Sink 376 Siphon 272 Skin friction 307 Skin-friction coefficient 168, 307–8 Slant depth 61Index 695 Slip in fluid couplings 652 in reciprocating pumps 596 Slip coupling 652 Slip surface 511 Slope 461–3 Smooth zone of flow 251 Solidity of axial runner 628 of wire gauze 270 Sommerfeld boundary condition 232–3 Sommerfeld condition, half 237 Sommerfeld number 234 Sonic velocity 493–6 Source 375–6, 401 Source and sink of numerically equal strength 387–9 Span (of aerofoil) 403 Specific-energy curve in dimensionless form 436–7 Specific energy in open channels 431–5 Specific entropy 489 Specific heat capacity 489 Specific gravity 13 Specific speed power 616 pumps 639–40 turbines 616 Speed of sound 493–6 Speed ratio of Pelton wheel 603 Spiral vortex 398–9 Stability of atmosphere 79 of bodies in fluids 71–8 of body subject to additional force 78 of floating bodies 72–8 of fluid itself 79–80 of submerged bodies 71–2 Stable equilibrium 71 Stagnation enthalpy 492 Stagnation hypothesis 405 Stagnation point 110, 384, 517 Stagnation pressure 110, 503 Stagnation temperature 492, 502 Stall 337 Stalled flow 337 Stalling angle 337 Stall torque 654 Standing wave 478–9 Stanton diagram 250 Starting vortex 405 Steady flow 36 Steady-flow energy equation derivation 97–100 for open channels 416–9 practical application 103–4 Steady-flow momentum equation 134, 428 Steady uniform flow 415, 419–23 Steep slope 435, 462–3 Stokes (unit) 26 Stokes’s Law 212, 391 Straight-line closure 570 Streak-line 32 Stream filament 31 Stream function 362–4 Streamlined body 325 Streamlines 31, 362–3, 370 pressure variation perpendicular to 107–9 Stream-tube 31 Strength of source 375 Strength of vortex 377 Stress 1, 9, 15 Strickler’s formula 422 Strouhal number 328 Submerged bodies, stability of 71–2 Subsonic flow 522, 524, 526–7 Subsonic velocity 496 Substantial acceleration 89 Super-cavitating machines 644 Supersonic flow 502, 527 between two boundaries 516–7 over concave boundary 516 round corners 512–6 Supersonic velocity 497 Surface profiles 457, 459 classification 461–3 Surface tension 28–30, 469 Surface tension forces 165–6 Surface waves 464–9 Surge tanks 583–6 Surges in open channels 427–31 Système International d’Unités (SI units) 6 Tail race 606 Temperature 9 Temperature difference 10 Temperature lapse rate 47 Temporal acceleration 89 Terminal velocity 213, 333 Thermally perfect gas 17–8, 489 Thermodynamic concepts 487–91 Thermodynamic effects 487 Thixotropic liquids 27 Thoma’s cavitation parameter 620 Thomson’s theorem 407 Three-dimensional flow 32, 331–5 Thrust coefficient 153 Thwaites’s method 322–3 Töpler system 549 Torque coefficient 654 Torque converter 654–6 Torricellian vacuum 49 Torricelli’s formula 114 Total energy line 106, 271–5 Total head 96 Total head line 106, 271–5 Tranquil flow 416, 435 Transition region of boundary layer 299 Transition zone of flow 251 Transpiration methods 210–1 Tsunamis 480–2 Turbines 591, 596–625 performance characteristics 623–5 types 596–7 Turbulence 35 free 352–3 Turbulent boundary layer, on smooth flat plate with zero pressure gradient 313–6 Turbulent flow 35 in pipes 246–8 velocity distribution in 344–52 Two-dimensional flow 32–3 Undular jump 441–2 Uniform flow 30 Uniform rectilinear flow 374, 384 Unit flow 624696 Index Unit power 624 Units 4–10 prefixes 8 Unit speed 624 Universal gas constant 18 Unstable equilibrium 71 Unsteady flow 36–7 Upper (or higher) critical velocity 247 U-tube manometers 50–5 Vacuum 48–9 Valve closure 569–74 Valve opening factor 570 Vapour pressure 16 Varied flow 416 Velocity of flow 630 of sound 496 of whirl 601 Velocity defect 345 Velocity defect law 345 Velocity diagrams 609–10, 612 Velocity distribution in rough pipes 349–50 in smooth pipes and over smooth plates 345–8 in turbulent flow 344–52 Velocity gradient 22 Velocity head 96 Velocity measurement 288–90 Velocity potential 367–9 Velocity profile 22 Vena contracta 113 Venturi flume 451–4 Venturi-meter 119–22 Virtual mass 392–3 Viscoelastic materials 27 Viscometer 211 Engler 211 Ostwald 211 Redwood 211 rotary 215–8 Saybolt 211 Searle 231 Viscometry 210 Viscosimeter see Viscometer Viscosity 21–8 absolute 23 basic SI unit 25 causes of 24–5 dynamic 23, 668 eddy 341–2 influence on flow 37 kinematic 26, 669 measurement of 210 quantitative definition 21–4 variation with temperature 668–9 Viscous forces 163–4 Viscous resistance 191–2 Viscous stresses 199 Viscous sub-layer 251–2, 347 Voidage 240 Volute 605, 626 Vortex forced 381–2 free 376–9 spiral 398–9 starting (on aerofoil) 405 Vortex drag 407–9 Vortex pair 396–8 Vortex shedding 328 Vortex sheet 511–2 Vortex street (or trail) 326–8 Vortex strength 377 Vorticity 365–6 Wake definition 325 flow pattern 326 width 328 Water hammer 558 Wave drag 340 Wave energy 472–3 Wave formation 480 Wave-making resistance 182–3 Wave propagation, finite waves 498–9 Waves Airy 467–8 capillary 469 deep water 468 dispersive 468 elastic 493–7 gravity 468 moving into shallow water 477–8 in open channels 427–31 oscillatory 464–79 reflection 564–9 standing 478–9 Weber number 166–7 Weir broad-crested 444–7 drowned 447–8 rapid flow approaching 449–51 sharp-crested 126–30 suppressed 128 Whirl 609 Whirl slip 633 Wicket gates 606 Windage 603 Wind turbine, momentum theory 154 Wings, aerodynamics of 403–9, 544–6 Yaw meter 291 Yield stress 198 Zone of action 498 Zone of silence 498
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mechanics of Fluids رابط مباشر لتنزيل كتاب Mechanics of Fluids
|
|