Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK الثلاثاء 06 أبريل 2021, 2:34 am | |
|
أخوانى فى الله أحضرت لكم كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK Narayanaswamy P. R. Iyer Electronics Consultant Sydney, NSW, Australia
و المحتوى كما يلي :
Contents Preface . xiii Author xvii 1. Introduction .1 1.1 Background 1 1.2 Objectives and Novelty 6 1.3 Research Methodology .8 1.4 Book Outline 8 References . 11 2. Carrier-Based Modulation Algorithms for Matrix Converters . 15 2.1 Introduction . 15 2.2 Model of Three-Phase AC to Three-Phase AC Matrix Converter . 15 2.3 Venturini and Optimum Venturini Modulation Algorithms 18 2.4 Model Development . 21 2.4.1 Model of a Matrix Converter Using Venturini First Method 21 2.4.2 Simulation Results .23 2.4.3 Model of a Matrix Converter Using Venturini Second Method .23 2.4.4 Simulation Results .27 2.4.5 Model of a Matrix Converter Using the Optimum Venturini Modulation Algorithm 31 2.4.6 Simulation Results . 31 2.5 Advanced Modulation Algorithm 31 2.5.1 Model Development 45 2.5.2 Model of a Matrix Converter Using the Advanced Modulation Algorithm 45 2.5.3 Simulation Results .47 2.6 Case Study: Speed Control and Brake by Plugging of Three-Phase Induction Motor Fed by Matrix Converter .53 2.6.1 Simulation Results .55 2.6.2 Real-Time Implementation .57 2.7 Discussion of Results 57 2.8 Conclusions 60 References .60 3. Multilevel Matrix Converter 63 3.1 Introduction .63viii Contents 3.2 Multilevel Matrix Converter with Three Flying Capacitors per Output Phase 63 3.3 Control of Multilevel Matrix Converter with Three Flying Capacitors per Output Phase by the Venturini Method . 70 3.4 Output Filter 71 3.5 Model Development .71 3.5.1 Simulation Results . 74 3.6 Conclusions 79 References .80 4. Direct Space Vector Modulation of Three-Phase Matrix Converter 81 4.1 Introduction . 81 4.2 Direct Space Vector Modulation Algorithm 82 4.3 Model of Three-Phase Asymmetrical Space Vector Modulated Matrix Converter 88 4.3.1 Duty-Cycle Sequence and Sector Switch Function Generator .89 4.3.2 Output Voltage and Input Current Sector Calculator 91 4.3.3 Output Voltage and Input Current Reference Angle Calculator 95 4.3.4 Gate Pulse Timing Calculator 95 4.3.5 Gate Pulse Generator .97 4.4 Simulation Results 98 4.5 Model of Direct Symmetrical Space Vector Modulated Three-Phase Matrix Converter 99 4.5.1 Duty-Cycle Sequence and Sector Switch Function Generator . 102 4.5.2 Output Voltage and Input Current Sector Calculator 102 4.5.3 Output Voltage and Input Current Reference Angle Calculator 105 4.5.4 Gate Pulse Timing Calculator 106 4.5.5 Gate Pulse Generator . 107 4.6 Simulation Results 109 4.7 Discussion of Results 111 4.8 Conclusions 112 References . 112 5. Indirect Space Vector Modulation of Three-Phase Matrix Converter 115 5.1 Introduction . 115 5.2 Principle of Indirect Space Vector Modulation . 115 5.3 Indirect Space Vector Modulation Algorithm 118 5.3.1 Voltage Source Inverter Output Voltage SVM . 121Contents ix 5.3.2 Voltage Source Rectifier Input Current SVM .125 5.3.3 Matrix Converter Output Voltage and Input Current SVM . 127 5.4 Model of Indirect Space-Vector-Modulated Three-Phase Matrix Converter . 135 5.4.1 Duty-Cycle Sequence and Sector Switch Function Generator . 135 5.4.2 Output Voltage and Input Current Sector Calculator 138 5.4.3 Output Voltage and Input Current Reference Angle Calculator 138 5.4.4 Gate Pulse Timing Calculator 138 5.4.5 Gate Pulse Generator . 140 5.5 Simulation Results 143 5.6 Discussion of Results 143 5.7 Conclusions 146 References . 146 6. Programmable AC to DC Rectifier Using Matrix Converter Topology 149 6.1 Introduction . 149 6.2 Output Voltage Amplitude Limit of Direct AC to AC Converters 150 6.3 Principle of Dual Programmable AC to DC Rectifier 152 6.4 Model of Dual Programmable AC to DC Rectifier 154 6.4.1 Simulation Results . 158 6.5 Principle of Single Programmable AC to DC Rectifier 158 6.6 Model of Single Programmable AC to DC Rectifier 163 6.6.1 Simulation Results . 166 6.7 Case Study: Speed Control and Brake by Plugging of Separately Excited DC Motor Using Single Programmable AC to DC Rectifier . 166 6.7.1 Simulation Results . 166 6.8 Case Study: Variable-Frequency Variable-Voltage Pure Sine-Wave AC Power Supply . 169 6.8.1 Simulation Results . 170 6.9 Case Study: Speed Control and Brake by Plugging of Two Separately Excited DC Motors Using Dual Programmable AC to DC Rectifier . 172 6.9.1 Simulation Results . 179 6.10 Real-Time Implementation . 179 6.11 Discussion of Results 182 6.12 Conclusions 183 References . 183x Contents 7. Delta-Sigma Modulation of Three-Phase Matrix Converters . 185 7.1 Introduction . 185 7.2 Review of Matrix Converter Gate Pulse Generation . 185 7.2.1 Delta-Sigma PWM Technique 186 7.3 Delta-Sigma Modulator Interface . 187 7.4 Venturini Model of Three-Phase Matrix Converter Using Delta-Sigma Modulation 188 7.4.1 Simulation Results . 190 7.5 Case Study: Three-Phase Delta-Sigma-Modulated Matrix Converter Fed Induction Motor Drive . 192 7.6 Discussion of Results 192 7.7 Conclusions 194 References . 195 8. Single-Phase AC to Three-Phase AC Matrix Converter . 197 8.1 Introduction . 197 8.2 Analysis of Single-Phase AC to Three-Phase AC Matrix Converter 198 8.2.1 Control of Virtual Rectifier . 198 8.2.2 Control of Virtual Inverter .200 8.2.3 Calculation of Modulation Ratio . 201 8.3 Design of Compensation Capacitor 203 8.4 Model Development .204 8.4.1 Model of Single-Phase AC to Three-Phase AC Matrix-Converter-Fed Induction Motor Drive 205 8.4.2 Simulation Results . 207 8.5 Conclusions 208 References .208 9. A Novel Single-Phase and Three-Phase AC to Single-Phase and Three-Phase AC Converter Using a DC Link .209 9.1 Introduction .209 9.2 Single-Phase AC to Single-Phase AC Converter Using a DC Link .209 9.3 Model of a PWM Single-Phase AC to Single-Phase AC Converter 211 9.3.1 Principle of Operation . 211 9.3.2 RMS Output Voltage 217 9.3.3 Simulation Results . 218 9.4 Discussion of Results 219 9.5 Three-Phase AC to Three-Phase AC Converter Using a DC Link .220 9.6 Model of a PWM Three-Phase AC to Three-Phase AC Converter 222 9.6.1 Simulation Results .222Contents xi 9.7 Discussion of Results 225 9.8 Conclusions 225 References .226 10. Real-Time Hardware-in-the-Loop Simulation of a Three-Phase AC to Single-Phase AC Matrix Converter .227 10.1 Introduction .227 10.2 Model of Three-Phase AC to Single-Phase AC Matrix Converter 227 10.3 Model Development .230 10.3.1 Model of Three-Phase AC to Single-Phase AC MC Using the Venturini Algorithm .230 10.3.2 Simulation Results . 232 10.4 Experimental Verification Using dSPACE Hardware Controller Board 233 10.5 Discussion of Results 237 10.6 Conclusions 237 References . 237 11. Three-Phase Z-Source Matrix Converter 239 11.1 Introduction . 239 11.2 Three-Phase Voltage-Fed Z-Source Direct Matrix Converter . 239 11.2.1 Principle of Operation and Analysis – Simple Boost Control . 240 11.2.2 Simple Boost Control Strategy . 243 11.2.3 Model Development 245 11.2.4 Simulation Results . 249 11.2.5 Discussion of Results . 249 11.2.6 Maximum Boost Control Strategy . 249 11.2.7 Model Development 252 11.2.8 Simulation Results . 252 11.2.9 Discussion of Results . 252 11.3 Three-Phase Quasi Z-Source Indirect Matrix Converter 254 11.3.1 Model Development 257 11.3.2 Simulation Results .259 11.3.3 Discussion of Results . 262 11.4 Conclusions 262 References .263 12. A Combined PWM Sine-Wave AC to AC and AC to DC Converter 265 12.1 Introduction .265 12.2 Single-Phase PWM AC to AC and AC to DC Converter .265 12.2.1 Model Development 266 12.2.2 Principle of Operation .268xii Contents 12.2.2.1 AC Mode 268 12.2.2.2 DC Mode 270 12.2.3 Single-Phase Sine-Wave PWM AC to AC and AC to DC Converter . 271 12.2.4 Simulation Results . 273 12.3 Three-Phase Sine-Wave PWM AC to AC and AC to DC Converter 273 12.3.1 Model Development 273 12.3.2 Simulation Results . 276 12.4 RMS and Average Value of a Uniform PWM Sine-Wave AC Voltage 276 12.5 Discussion of Results 282 12.6 Conclusions 283 References .283 13. Cycloconverters, Indirect Matrix Converters and Solid-State Transformers 285 13.1 Introduction .285 13.2 Single-Phase AC to Single-Phase AC Cycloconverters 285 13.2.1 Simulation Results .286 13.3 Three-Phase Cycloconverters 289 13.3.1 Simulation Results .290 13.4 Discussion of Results 292 13.5 Three-Phase Conventional Indirect Matrix Converter 294 13.5.1 Simulation Results . 294 13.6 Three-Phase Multilevel Indirect Matrix Converter . 297 13.6.1 Simulation Results . 298 13.7 Discussion of Results 300 13.8 Solid-State Transformer 300 13.8.1 SST Using Dual Active Bridge Topology 304 13.8.2 Simulation Results .304 13.8.3 SST Using Direct AC to AC Converter Topology 307 13.8.4 Simulation Results .308 13.9 Discussion of Results 308 13.10 Conclusions 310 References . 311 Appendix A: Matrix Converter Derivations 313 Index Index A AC mode, 265, 268, 269, 283 AC power supply dual sine wave, 170 pure sine wave, 149, 169, 182, 183 AC to DC rectifier, 149 Adders, 47 Advanced modulation algorithm, 31 gate pulse pattern, 51 input voltage, 36 line-to-line output voltage, 48, 50, 52 line-to-neutral output voltage, 47, 49, 52 load current, 50 matrix converter parameters, 45 model of, 45, 46 modulation index, 41 offset duty ratio, 42, 44 output voltage, 37, 39 phase A input current, 48, 49 program development, 52–53 simulation results, 47, 52 triangle carrier, 51 Alesina–Venturini method, 81 Asymmetrical space vector modulation (ASVM) rules for, 86–87 switching pattern, 88 zero configuration, 87 Average output voltage calculation, 276–282 B Bidirectional semiconductor switches, 1, 82 development of, 1 gate pulses for, 3, 21, 107 in matrix converters, 15–16 topologies, 2 Bidirectional switches, 23, 31, 63, 71, 74, 82, 101, 107, 109, 140, 142, 154, 185, 186, 187, 188 Bipolar dual output inverter, 210, 220 Boolean logic, 8 Boost factor, 242, 257, 262 Brake by plugging, 6–9, 53, 57, 149, 166, 172, 182, 265 C Cage IM, single-phase AC to threephase AC MC model development, 206–207 model parameters, 204, 207 no-load test, 204–205 simulation results, 207–208 Capacitor clamped, 63 compensation, 197, 198, 200, 203, 207 DC link, 1, 16, 81, 283, 295 flying, 63, 64, 65, 70, 71 Carrier switching, 71, 74, 135, 146, 163 Cascade, 63 CMC, see Conventional matrix converter (CMC) Combinational logic circuit, 187–189 Combinational logic interface, 189 Combined PWM sine-wave AC to AC and AC to DC converter average output voltage and RMS calculation, 276–282 single-phase AC mode operation, 268–269 block diagram of, 265–266 DC mode operation, 270–271 model of, 266–268, 271–272 model parameters, 273 simulation results, 273–276 three-phase block diagram of, 273, 277 model of, 277 simulation results, 276, 279–281 Common-emitter IGBT topology, 1, 3, 15 Common-mode addition technique, 20 Comparator, 22, 47, 187322 Index Compensation capacitor capacitance of, 197, 203 current, 200 design of, 203 voltage, 200, 202, 203 Conventional matrix converter (CMC), 115–116 Cumulative sector timing, 91, 103, 135 Current source converter (CSC), 198 Cycloconverters, 1, 285 bridge type, 285 midpoint, 284, 285 three phase four pulse, 287, 290 three phase half wave three pulse, 287, 288 D DAB topology, see Dual active bridge (DAB) topology DC generator, 57 DC link, 197, 209 DC-link voltage, 201–202 DC mode, 265, 270, 280 DC motor model subsystem, 172 DCTLIMC, see Diode-clamped threelevel indirect matrix converter (DCTLIMC) Delta-sigma modulation (DSM), 7, 185, 186, 188, 192, 194 for output phase matrix converter, 187–188 PWM technique, 186 three-phase MC for induction motor drive, 192–194 model parameters, 190 simulation results, 190–192 Venturini model of, 188–190 truth table for, 188 Delta-sigma modulator, 187, 188 Demux, 91, 103, 138 Diode clamped, 63 Diode-clamped three-level indirect matrix converter (DCTLIMC) block diagram, 297, 298 model of, 298–299 simulation results, 300–303 truth table, 297, 298 Direct space vector modulation (DSVM), 81–82 duty cycles, 86 output voltage and input current vectors, 82, 84 switching configurations, 82, 84, 85 Direct transfer function approach, 20 DSM, see Delta-sigma modulation (DSM) dSPACE, 53, 179, 182 dSPACE hardware controller board , 57, 233–236 dSPACE hardware set-up, 235, 236 DSVM, see Direct space vector modulation (DSVM) Dual active bridge (DAB) topology, 10, 304–307 Dual converter, 265 Dual MOSFET inverter output voltage, 214, 224 working of, 211 Dual programmable AC to DC rectifier, 7, 154 computed values, 157 DC motor drive, 172, 178–181 MATLAB function, 154 model of, 154–155 model parameters, 156 phasor diagram, 153, 154 principle of, 152–154 program development, 157 simulation results, 158–162 Dual sine-wave AC power supply, 170, 176–177 Duty cycles, 122, 128 Duty-cycle sequencing ASVM MC, 89, 91 DSSVM MC, 102, 104–105 ISVM MC, 135, 137–138 Dwell time, 98, 108, 142 E Electric traction (ET), 7, 53, 60, 179, 265, 283 Electromagnetic torque, 192, 207–208 Embedded MATLAB, 21, 23, 31, 45, 47, 71, 73, 82, 89, 97, 102, 107, 135, 140, 154, 163, 188, 207 Equivalent circuit, 198Index 323 F Filter input, 198, 207 L-C, 197 output, 71, 73, 89, 99, 135, 163 R-L-C output, 157, 163, 207 First-order delta-sigma modulator, 186 Frequency, 71, 74 Frequency converters, 1 Future Renewable Electric Energy Delivery and Management (FREEDM) system, 300 G Gainmultiplier, 157 Gate pulse, 188 Gate pulse generator, 185–186 ASVM MC, 97–98 DSSVM MC, 107–109 ISVM MC, 140–142 programmable AC to DC rectifier, 154 Gate pulse pattern, 87 Gate pulse timing calculator ASVM MC, 95–97 DSSVM MC, 106–107 ISVM MC, 138–140 Gate timing pattern, 140 H Hardware-in-the-loop (HIL) simulation, 7, 227, 237 dSPACE experiment, 233–236 model parameters, 230 simulation results, 232–233 SIMULINK model, 231 Harmonic spectrum, 23, 27, 47, 74, 98, 109, 143, 190, 192 High-frequency transformer (HFT), 10, 285, 298, 300, 306 Hybrid Electric Vehicle (HEV), 7, 53, 60, 179, 182, 265, 283 I IGBT bidirectional switch, 1–2, 210 conducting modes, 217 input and output voltage waveforms, 216, 217 output of, 221 PWM gate drives for, 211, 213 working principle, 214 Indirect matrix converter (IMC), 197, 285 conventional model, 294–297 DCTLIMC topology block diagram, 297, 298 model of, 298–299 simulation results, 300–303 truth table, 297, 298 diode clamped multilevel, 295 QZSIMC topology, 254–255 boost factor, 257, 262 duty cycle, 256–257 model development, 257–259 model parameters, 257 simulation results, 259–262 ST and NST state, 254–256 Indirect space vector modulation (ISVM), 115 algorithm, 118–121, 314–319 MC output voltage and input current, 127–128 switching combinations, 128–134 VSI output voltage, 121–124 VSR input current, 125–126 principle of, 115–117 three-phase ISVM MC duty-cycle sequence and sector switch function generator, 135, 137–138 gate pulse generator, 140–142 gate pulse timing calculator, 138–140 model of, 135, 136 model parameters, 143 output voltage and input current reference angle calculator, 138, 139 output voltage and input current sector calculator, 138 PWM gate signal timing, 137 simulation results, 143–146 Indirect SVM, 117 Indirect transfer function (ITF) approach, 120–121324 Index Induction motor (IM), 53, 197 delta-sigma-modulated MC for, 192–194 single-phase AC to three-phase AC MC model of, 206–207 model parameters, 204, 207 no-load test, 204–205 simulation results, 207–208 three-phase MC-fed, 53 model of, 54 parameters, 55 real-time implementation, 57–59 simulation results, 55–56 Input current, 85 Insulated Gate Bipolar Transistor (IGBT), 23 ISVM, see Indirect space vector modulation (ISVM) ITF approach, see Indirect transfer function (ITF) approach K Kirchhoff’s law, 4 L LC filter, 197 Line-to-line output voltage ASVM MC, 99–101 DSM MC, 190, 191 ISVM MC, 144–146 matrix converter advanced modulation algorithm, 48, 50, 52 optimum Venturini modulation algorithm, 40, 42, 44 Venturini first method, 26, 28, 31 Venturini second method, 34, 36, 37 PH3 MMC with three FC, 75, 77, 79 SSVM MC, 109–111 Line-to-neutral output voltage ASVM MC, 99–101 DSM MC, 190, 191 ISVM MC, 144–146 matrix converter advanced modulation algorithm, 47, 49, 52 optimum Venturini modulation algorithm, 39, 41, 44 Venturini first method, 25, 26, 31 Venturini second method, 33, 34, 37 PH3 MMC with three FC, 74, 76, 79 SSVM MC, 109–111 Load current ASVM MC, 99–101 DSM MC, 190, 191 ISVM MC, 144–146 matrix converter advanced modulation algorithm, 50 optimum Venturini modulation algorithm, 43 Venturini first method, 29 Venturini second method, 37 MMC, 79 PH3 MMC with three FC, 77 SSVM MC, 109–111 Logical and bit operator, 89, 101, 135 Logic gates, 6, 47, 73 Low-frequency modulation matrix concept, 1, 8, 16 M Math function, 89, 135 MATLAB function, 91, 101, 135, 154 Matrix converter (MC), 1, 15, 185 delta-sigma, 185 multilevel, 63 single phase AC to three phase AC, 198 Maximum boost control strategy, 251 model development, 252 simulation results, 252–254 voltage gain, 252 Maximum output voltage amplitude, 152 MC, see Matrix converter (MC) MDCM, see Modulation duty-cycle matrix (MDCM) MMC with three flying capacitors per output phase, 63 capacitor voltage, 63–64 input currents, 70 model of, 64 output filter circuit, 71Index 325 output voltage, 69 switch combinations, 64, 66–68 switching function, 65 three-phase, see PH3 MMC with three FC truth table, 65 Venturini algorithm, 70–71 Modulation algorithm, 16 advanced, 31, 45 optimum Ventrini, 21, 31 Venturini, 21 Modulation duty cycle, 17–18, 150, 152, 188, 229 Modulation duty-cycle matrix (MDCM), 81 Modulation function, 6, 20, 31, 70, 71, 73, 162, 188, 202, 229, 311 Modulation index, 122 ASVM MC, 101 definition of, 41 ISVM MC, 146 for matrix converter, 21, 45 real-time HIL simulation, 230 single programmable rectifier, 168 SSVM MC, 111 variation of, 55, 56 voltage source rectifier, 126 Modulation matrix, 1, 8, 16, 18 Modulation ratio calculation, 201–202 Modulation signal, 199 Multilevel, 63 Multilevel indirect matrix converter, see Diode-clamped three-level indirect matrix converter (DCTLIMC) Multilevel matrix converter (MMC), 6, 63, see also MMC with three flying capacitors per output phase Multipliers, 73 Multiport switch, 55, 166, 179 Mux, 91, 102, 138 N Noise peaks, 194 Noise regulation, 185, 194 No-load test, three-phase cage IM, 204–205 Non-shoot through (NST) state, 239, see also Shoot-through (ST) state three-phase QZSIMC, 254–256 three-phase voltage-fed ZSDMC, 240–241 O Offset duty ratio, 42, 44 Operational amplifier, 57 Operational amplifier zero crossing comparators, 211, 213, 214, 223, 224 Optimum Venturini modulation algorithm, 31 line-to-line output voltage, 40, 42, 44 line-to-neutral output voltage, 39, 41, 44 load current, 43 model of, 38 phase A input current, 40, 43 program development, 35, 36 simulation results, 31, 44 OR gates, 96 Oscilloscope waveform, 98, 109, 111, 190 Output phase matrix converter, 187–188 Output power, 202, 203 Output voltage, 85 Output voltage amplitude limit, 150 P Patent, 282 Permanent Magnet DC Motor (PMDC), 265 Phase angle, 83 Phase angle varying device, 154, 182 Phase A input current ASVM MC, 99, 100 DSM MC, 190, 191 ISVM MC, 144, 145 matrix converter advanced modulation algorithm, 48, 49 optimum Venturini modulation algorithm, 40, 43 Venturini first method, 25, 27326 Index Phase A input current (cont.) Venturini second method, 33, 35 PH3 MMC with three FC, 75, 76, 79 SSVM MC, 110, 111 PH3 MMC with three FC, 71 gate pulse pattern, 78–79 line-to-line output voltage, 75, 77, 79 line-to-neutral output voltage, 74, 76, 79 load current, 77 model of, 72 model parameters, 73 phase A input current, 75, 76, 79 saw-tooth carrier, 78 simulation results, 74, 79 Plant simulation, 227 Polarity reversal, 265, 266 Power converter system, 82 Power factor, 44, 45, 112 Programmable AC to DC rectifier dSPACE implementation, 179, 182 dual programmable rectifier computed values, 157 DC motor drive, 172, 178–181 MATLAB function, 154 model of, 154–155 model parameters, 156 phasor diagram, 153, 154 principle of, 152–154 program development, 157 simulation results, 158–162 dual sine-wave AC power supply, 170, 176–177 single programmable rectifier, 158 DC motor drive, 166, 171–173 model of, 163, 164 model parameters, 168 phasor diagram, 162–163 program development, 165 simulation results, 166–170 single sine-wave AC power supply, 170, 174–175 PSCAD, 79 Pulse-width modulation (PWM), 9, 186 single-phase AC to AC converter model block diagram of, 209–210 model of, 211, 212 model parameters, 219 operating principle, 211, 214–217 RMS output voltage, 217–218 simulation results for, 218–220 using DC link, 209–210, 213 three-phase AC to AC converter model block diagram of, 220–222 model of, 222, 223 simulation results, 222, 224–225 using DC link, 220–222, 224 Pure sine-wave AC power supply, 9 Q Quantizer, 186, 187 Quasi Z-source indirect matrix converter (QZSIMC), 7 boost factor, 257, 262 duty cycle, 256–257 equivalent circuits, 254 model development, 257–259 model parameters, 257 simulation results, 259–262 ST and NST state, 254–256 topology of, 254–255 R Real-Time, 57, 60, 179 hardware-in-the-loop, 227 Rectifier-fed DC motor drive dual programmable, 172, 178–181 single programmable, 166, 171–173 REM function, 91, 95, 105, 135 REM block, 95, 105 Resistor network, 57 RLC filter, 23, 47 R-L load, 6, 9, 47, 89, 101, 157, 163, 172, 192, 197 Rotor speed, 207 RMS of compensation capacitor voltage, 203 of output voltage, 217–218 of uniform PWM sinusoidal voltage signal, 276, 281 Repeating sequence, 55Index 327 S Sampling frequency, 185, 192, 194 Sampling period, 83, 87 Saw-tooth carrier, 6, 57, 71, 74, 179, 185, 207 SCR cycloconverters, see Silicon controlled rectifiers (SCR) cycloconverters Sector switch function, 88, 98, 102, 135 Sector switch function generation ASVM MC, 89, 91 DSSVM MC, 102, 104–105 ISVM MC, 135, 137–138 SEDC, see Separately excited DC (SEDC) motors Separately excited DC (SEDC) motors, 149, 166, 172, 179, 182, 183, 265 dual programmable rectifier-fed, 180, 181 Shoot-through (ST) state, 239, see Non-shoot through (NST) state three-phase QZSIMC, 254–256 three-phase voltage-fed ZSDMC, 240–241 Silicon controlled rectifiers (SCR) cycloconverters single-phase, 285–288 three-phase, 289–293 Simple boost control strategy, 243 input voltage envelop indicators, 244–245 model development, 246, 249 model parameters, 248 program development, 246–247 PWM signals, 244 simulation results, 248, 250–251 Single-phase AC to three-phase AC MC, 197 compensation capacitor design, 203 equivalent circuit of, 198 modulation ratio calculation, 201–202 three-phase cage IM model development, 206–207 model parameters, 204, 207 no-load test, 204–205 simulation results, 207–208 virtual inverter control, 200–201 virtual rectifier control, 198–200 Single-phase midpoint SCR cycloconverter circuit configuration, 286 model of, 287, 288 simulation results, 288 Single-phase PWM AC to AC and AC to DC converter AC mode operation, 268–269 block diagram, 265–266 DC mode operation, 270–271 model of, 266–268, 271–272 model parameters, 273 simulation results, 273–276 Single-phase PWM AC to AC converter block diagram of, 209–210 model of, 211, 212 model parameters, 219 operating principle, 211, 214–217 RMS output voltage, 217–218 simulation results for, 218–220 using DC link, 209–210, 213 Single-phase SCR bridge cycloconverter circuit configuration, 285–286 model of, 286, 287 simulation results, 287 Single programmable AC to DC rectifier, 158, 163 DC motor drive, 166, 171–173 model of, 163, 164 model parameters, 168 phasor diagram, 162–163 program development, 165 simulation results, 166–170 Single sine-wave AC power supply, 170, 174–175 Slider gain block, 154, 157 Solid-state transformers (SST), 7, 285, 298, 306 block diagram, 300, 303 DAB topology, 304 model development, 305 model parameters, 306 simulation results, 304, 306–307 using direct AC to AC converter topology block diagram, 307 model development, 311 simulation results, 308, 310–311328 Index Sources block set, 89, 101, 135 Source code, 22, 47, 73, 138, 207 Space vector hexagon, 82 Space vector modulation (SVM), 81–83, 85, 115, 117 ASVM, 86, 88 DSSVM, 99, 109 DSVM, 81, 82 Indirect, 115, 118 SSVM, 86, 109 Space vector pulse-width modulation (SVPWM), 115 Speed control, 166, 182 Squirrel cage IM, single-phase AC to three-phase AC MC model development, 206–207 model parameters, 204, 207 no-load test, 204–205 simulation results, 207–208 SST, see Solid-state transformers (SST) SSVM, see Symmetrical space vector modulation (SSVM) Stator current, 207 ST duty cycle, 248, 251, 254, 256 Step-down transformer, 211, 213 ST state, see Shoot-through (ST) state SUBTRACT modules, 91, 102, 105, 135 Summer, 22, 73 SVM algorithm, 83 SVM, see Space vector modulation (SVM) Switching cells, 71 Switching configurations, 83, 84, 85, 86 Switching frequency, 65, 146, 163 Switching function, 16–17, 65, 73, 118, 228 Switching period, 128, 135 Symmetrical space vector modulation (SSVM) gate pulse timing, 106 gate pulse generator, 107 reference angle calculator, 105 rules for, 86, 87 switching pattern, 89 zero configuration for, 88 T THD, see Total harmonic distortion (THD) Three-phase AC to single-phase AC MC input-output relation, 228–229 model of, 227–228 modulation duty cycle, 229 modulation function, 229 real-time HIL simulation, see Hardware-in-the-loop (HIL) simulation switching function, 228 Venturini algorithm, 227, 229, 230 Three-phase AC to three-phase AC MC, 149, 239 advanced modulation algorithm, 31 gate pulse pattern, 51 input voltage, 36 line-to-line output voltage, 48, 50, 52 line-to-neutral output voltage, 47, 49, 52 load current, 50 matrix converter parameters, 45 model of, 45, 46 modulation index, 41 offset duty ratio, 42, 44 output voltage, 37, 39 phase A input current, 48, 49 program development, 52–53 simulation results, 47, 52 triangle carrier, 45, 51 advantages, 115 algorithms, 18–20 applications of, 7 bidirectional switch, 15–16 mathematical expression, 17 maximum output voltage amplitude for, 150–152 model of, 6–7, 21 modulation duty cycle, 17–18, 150 optimum Venturini modulation algorithm, 31 line-to-line output voltage, 40, 42, 44 line-to-neutral output voltage, 39, 41, 44 load current, 43 model of, 38 phase A input current, 40, 43 program development, 35, 36 simulation results, 31, 44 requirements for, 6Index 329 switching combinations, 5 switching function, 16–17 three phase alternator, 57 three-phase induction motor, 53–59 topology of, 3, 4 total harmonic distortion, 57 Venturini first method, 23 gate pulse pattern, 30 line-to-line output voltage, 26, 28, 31 line-to-neutral output voltage, 25, 26, 31 load current, 29 matrix converter parameters, 21 model of, 24 phase A input current, 25, 27 program development, 21, 22 saw-tooth carrier, 29 simulation results, 31 Venturini second method, 23 line-to-line output voltage, 34, 36, 37 line-to-neutral output voltage, 33, 34, 37 load current, 37 model of, 32 phase A input current, 33, 35 program development, 28, 30 simulation results, 27, 37 Three-phase ASVM MC, 88, 89 duty-cycle sequence and sector switch function generator, 89, 91 gate pulse generator, 97–98 gate pulse timing calculator, 95–97 model parameters, 99 output voltage and input current reference angle calculator, 95 output voltage and input current sector calculator, 91–95 simulation results, 98–99 Three-phase cage induction motor (IM), 192 model development, 206–207 model parameters, 204, 207 no-load test, 204–205 simulation results, 207–208 Three-phase conventional IMC, 294–297 Three-phase diode-clamped multilevel IMC block diagram, 297, 298 model of, 298–299 simulation results, 300–303 truth table, 297, 298 Three-phase DSM MC for induction motor drive, 192–194 model parameters, 190 simulation results, 190–192 Venturini model of, 188–189 Three-phase DSSVM MC, 99 duty-cycle sequence and sector switch function generator, 102, 104–105 gate pulse generator, 107–109 gate pulse timing calculator, 106–107 model of, 103 output voltage and input current reference angle calculator, 105 output voltage and input current sector calculator, 102 simulation results, 109–111 Three-phase four-pulse SCR bridge cycloconverter model of, 292, 293 power delivery to three-phase load, 289, 290 simulation results, 294 Three-phase half wave three pulse SCR cycloconverter circuit configuration, 289 model of, 290, 291 power delivery to three-phase load, 290 simulation results, 292 Three-phase induction motor (IM), 53, 57 load, 197 model of, 54 parameters, 55 real-time implementation, 57–59 simulation results, 55–56 Three-phase ISVM MC duty-cycle sequence and sector switch function generator, 135, 137–138 gate pulse generator, 140–142 gate pulse timing calculator, 138–140330 Index Three-phase ISVM MC (cont.) model of, 135, 136 model parameters, 143 output voltage and input current reference angle calculator, 138, 139 output voltage and input current sector calculator, 138 PWM gate signal timing, 137 simulation results, 143–146 Three-phase MMC, 71, 74, 79 Three-phase PWM AC to AC and AC to DC converter block diagram of, 273, 277 model of, 277 simulation results, 276, 279–281 Three-phase PWM AC to AC converter block diagram of, 220–222 model of, 222, 223 simulation results, 222, 224–225 using DC link, 220–222, 224 Three-phase QZSIMC boost factor, 257, 262 duty cycle, 256–257 model development, 257–259 model parameters, 257 simulation results, 259–262 ST and NST state, 254–256 topology of, 254–255 Three-phase voltage-fed ZSDMC, 319–320 boost factor, 242 configuration, 239–240 maximum boost control, 251 model development, 252 simulation results, 252–254 voltage gain, 252 simple boost control, 243 input voltage envelop indicators, 244–245 model development, 246, 249 model parameters, 248 program development, 246–247 PWM signals, 244 simulation results, 248, 250–251 ST and NST state, 240–241 Three pole double throw switch, 55 Three winding transformer, 7, 266, 268, 271, 283, 286 Thyristor cycloconverters, 1, 285 Timing pulse, 154 Total harmonic distortion (THD), 57, 111, 112, 143, 194 Transfer matrix, 1, 16, 124, 126 Triangle carrier, 45, 48, 51, 91, 92, 103, 135, 185, 258 Triangle generator, 47 U Uniform square PWM sinusoidal voltage signal, 276 average output voltage, 282 RMS value, 276, 281 Unity input phase displacement factor, 20, 229 V Variable-frequency variable-voltage pure sinewave AC power supply, 169, 170 Variable speed, 197 Venturini first method, 23 gate pulse pattern, 30 line-to-line output voltage, 26, 28, 31 line-to-neutral output voltage, 25, 26, 31 load current, 29 matrix converter parameters, 21 model of, 24 phase A input current, 25, 27 program development, 21, 22 saw-tooth carrier, 29 simulation results, 31 Venturini model, 188, 192, 195 Venturini modulation algorithm, 150, 229, 311–312 Venturini second method, 23 line-to-line output voltage, 34, 36, 37 line-to-neutral output voltage, 33, 34, 37 load current, 37 model of, 32 phase A input current, 33, 35 program development, 28, 30 simulation results, 27, 37 Virtual DC-link voltage, 201–202Index 331 Virtual inverter control, 200–201 Virtual rectifier control, 198–200 Virtual rectifier-inverter, 197 Voltage gain conventional matrix converter, 10 indirect matrix converter, 120 maximum boost control strategy, 252 with three-phase QZSIMC, 10, 254 Voltage source inverter (VSI) output voltage, 120–124 Voltage source rectifier (VSR), 120–121 input current, 125–126 modulation index, 126 Z Zero configurations asymmetrical space vector modulation, 87 symmetrical space vector modulation, 87, 88 Zero crossing comparator (ZCC)
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK رابط مباشر لتنزيل كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK
|
|