Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Dynamics of Mechanical Systems الأربعاء 25 أغسطس 2021, 4:53 pm | |
|
أخواني في الله أحضرت لكم كتاب Dynamics of Mechanical Systems Harold Josephs, Ronald L. Huston
و المحتوى كما يلي :
Contents Chapter 1 Introduction 1 1.1 Approach to the Subject 1 1.2 Subject Matter .1 1.3 Fundamental Concepts and Assumptions .2 1.4 Basic Terminology in Mechanical Systems 3 1.5 Vector Review .5 1.6 Reference Frames and Coordinate Systems .6 1.7 Systems of Units .9 1.8 Closure .11 References .11 Problems .12 Chapter 2 Review of Vector Algebra 15 2.1 Introduction .15 2.2 Equality of Vectors, Fixed and Free Vectors 15 2.3 Vector Addition 16 2.4 Vector Components 19 2.5 Angle Between Two Vectors .23 2.6 Vector Multiplication: Scalar Product .23 2.7 Vector Multiplication: Vector Product 28 2.8 Vector Multiplication: Triple Products 33 2.9 Use of the Index Summation Convention .37 2.10 Review of Matrix Procedures .38 2.11 Reference Frames and Unit Vector Sets 41 2.12 Closure .44 References .44 Problems .45 Chapter 3 Kinematics of a Particle 57 3.1 Introduction .57 3.2 Vector Differentiation 57 3.3 Position, Velocity, and Acceleration 59 3.4 Relative Velocity and Relative Acceleration 61 3.5 Differentiation of Rotating Unit Vectors 63 3.6 Geometric Interpretation of Acceleration .66 3.7 Motion on a Circle .66 3.8 Motion in a Plane .68 3.9 Closure .71 References .71 Problems .71 Chapter 4 Kinematics of a Rigid Body .77 4.1 Introduction .77 4.2 Orientation of Rigid Bodies 774.3 Configuration Graphs 79 4.4 Simple Angular Velocity and Simple Angular Acceleration 83 4.5 General Angular Velocity 85 4.6 Differentiation in Different Reference Frames 87 4.7 Addition Theorem for Angular Velocity 90 4.8 Angular Acceleration .93 4.9 Relative Velocity and Relative Acceleration of Two Points on a Rigid Body 97 4.10 Points Moving on a Rigid Body 103 4.11 Rolling Bodies .106 4.12 The Rolling Disk and Rolling Wheel 107 4.13 A Conical Thrust Bearing .110 4.14 Closure .113 References .113 Problems .114 Chapter 5 Planar Motion of Rigid Bodies — Methods of Analysis 125 5.1 Introduction .125 5.2 Coordinates, Constraints, Degrees of Freedom 125 5.3 Planar Motion of a Rigid Body 128 5.3.1 Translation .129 5.3.2 Rotation 130 5.3.3 General Plane Motion 130 5.4 Instant Center, Points of Zero Velocity .133 5.5 Illustrative Example: A Four-Bar Linkage .136 5.6 Chains of Bodies .142 5.7 Instant Center, Analytical Considerations .147 5.8 Instant Center of Zero Acceleration 150 Problems .156 Chapter 6 Forces and Force Systems 163 6.1 Introduction .163 6.2 Forces and Moments 163 6.3 Systems of Forces .165 6.4 Zero Force Systems 170 6.5 Couples 170 6.6 Wrenches 173 6.7 Physical Forces: Applied (Active) Forces .177 6.7.1 Gravitational Forces .177 6.7.2 Spring Forces .178 6.7.3 Contact Forces .180 6.7.4 Action–Reaction 181 6.8 First Moments .182 6.9 Physical Forces: Inertia (Passive) Forces 184 References .187 Problems .187 Chapter 7 Inertia, Second Moment Vectors, Moments and Products of Inertia, Inertia Dyadics .199 7.1 Introduction .199 7.2 Second-Moment Vectors 1997.3 Moments and Products of Inertia .200 7.4 Inertia Dyadics 203 7.5 Transformation Rules 205 7.6 Parallel Axis Theorems 206 7.7 Principal Axes, Principal Moments of Inertia: Concepts 208 7.8 Principal Axes, Principal Moments of Inertia: Example .211 7.9 Principal Axes, Principal Moments of Inertia: Discussion 215 7.10 Maximum and Minimum Moments and Products of Inertia .223 7.11 Inertia Ellipsoid 228 7.12 Application: Inertia Torques .228 References .230 Problems .230 Chapter 8 Principles of Dynamics: Newton’s Laws and d’Alembert’s Principle .241 8.1 Introduction .241 8.2 Principles of Dynamics .242 8.3 d’Alembert’s Principle .243 8.4 The Simple Pendulum .245 8.5 A Smooth Particle Moving Inside a Vertical Rotating Tube .246 8.6 Inertia Forces on a Rigid Body 249 8.7 Projectile Motion 251 8.8 A Rotating Circular Disk 253 8.9 The Rod Pendulum 255 8.10 Double-Rod Pendulum .258 8.11 The Triple-Rod and N-Rod Pendulums .260 8.12 A Rotating Pinned Rod .263 8.13 The Rolling Circular Disk .267 8.14 Closure .270 References .270 Problems .271 Chapter 9 Principles of Impulse and Momentum 279 9.1 Introduction .279 9.2 Impulse 279 9.3 Linear Momentum .280 9.4 Angular Momentum 282 9.5 Principle of Linear Impulse and Momentum 285 9.6 Principle of Angular Impulse and Momentum 288 9.7 Conservation of Momentum Principles .294 9.8 Examples 295 9.9 Additional Examples: Conservation of Momentum 301 9.10 Impact: Coefficient of Restitution 303 9.11 Oblique Impact .306 9.12 Seizure of a Spinning, Diagonally Supported, Square Plate 309 9.13 Closure .310 Problems .311 Chapter 10 Introduction to Energy Methods 321 10.1 Introduction .321 10.2 Work .321 10.3 Work Done by a Couple .32610.4 Power .327 10.5 Kinetic Energy 327 10.6 Work–Energy Principles 329 10.7 Elementary Example: A Falling Object .332 10.8 Elementary Example: The Simple Pendulum .333 10.9 Elementary Example — A Mass–Spring System 336 10.10 Skidding Vehicle Speeds: Accident Reconstruction Analysis .338 10.11 A Wheel Rolling Over a Step .341 10.12 The Spinning Diagonally Supported Square Plate .342 10.13 Closure .344 References (Accident Reconstruction) 344 Problems .344 Chapter 11 Generalized Dynamics: Kinematics and Kinetics 353 11.1 Introduction .353 11.2 Coordinates, Constraints, and Degrees of Freedom 353 11.3 Holonomic and Nonholonomic Constraints .357 11.4 Vector Functions, Partial Velocity, and Partial Angular Velocity .359 11.5 Generalized Forces: Applied (Active) Forces 363 11.6 Generalized Forces: Gravity and Spring Forces .367 11.7 Example: Spring-Supported Particles in a Rotating Tube .369 11.8 Forces That Do Not Contribute to the Generalized Forces 375 11.9 Generalized Forces: Inertia (Passive) Forces .377 11.10 Examples 379 11.11 Potential Energy .389 11.12 Use of Kinetic Energy to Obtain Generalized Inertia Forces .394 11.13 Closure .401 References .401 Problems .402 Chapter 12 Generalized Dynamics: Kane’s Equations and Lagrange’s Equations .415 12.1 Introduction .415 12.2 Kane’s Equations 415 12.3 Lagrange’s Equations 423 12.4 The Triple-Rod Pendulum 429 12.5 The N-Rod Pendulum .433 12.6 Closure .435 References .436 Problems .436 Chapter 13 Introduction to Vibrations .439 13.1 Introduction .439 13.2 Solutions of Second-Order Differential Equations .439 13.3 The Undamped Linear Oscillator 444 13.4 Forced Vibration of an Undamped Oscillator .446 13.5 Damped Linear Oscillator 447 13.6 Forced Vibration of a Damped Linear Oscillator .449 13.7 Systems with Several Degrees of Freedom 450 13.8 Analysis and Discussion of Three-Particle Movement: Modes of Vibration 45513.9 Nonlinear Vibrations .458 13.10 The Method of Krylov and Bogoliuboff .463 13.11 Closure .466 References .466 Problems .467 Chapter 14 Stability .479 14.1 Introduction .479 14.2 Infinitesimal Stability .479 14.3 A Particle Moving in a Vertical Rotating Tube .482 14.4 A Freely Rotating Body .485 14.5 The Rolling/Pivoting Circular Disk .488 14.6 Pivoting Disk with a Concentrated Mass on the Rim .493 14.6.1 Rim Mass in the Uppermost Position 498 14.6.2 Rim Mass in the Lowermost Position 502 14.7 Discussion: Routh–Hurwitz Criteria .505 14.8 Closure .509 References .509 Problems .510 Chapter 15 Balancing .513 15.1 Introduction .513 15.2 Static Balancing .513 15.3 Dynamic Balancing: A Rotating Shaft 514 15.4 Dynamic Balancing: The General Case 516 15.5 Application: Balancing of Reciprocating Machines 520 15.6 Lanchester Balancing Mechanism .525 15.7 Balancing of Multicylinder Engines 526 15.8 Four-Stroke Cycle Engines .528 15.9 Balancing of Four-Cylinder Engines .529 15.10 Eight-Cylinder Engines: The Straight-Eight and the V-8 532 15.11 Closure .534 References .534 Problems .534 Chapter 16 Mechanical Components: Cams .539 16.1 Introduction .539 16.2 A Survey of Cam Pair Types 540 16.3 Nomenclature and Terminology for Typical Rotating Radial Cams with Translating Followers .541 16.4 Graphical Constructions: The Follower Rise Function 543 16.5 Graphical Constructions: Cam Profiles 544 16.6 Graphical Construction: Effects of Cam–Follower Design .545 16.7 Comments on Graphical Construction of Cam Profiles 549 16.8 Analytical Construction of Cam Profiles .550 16.9 Dwell and Linear Rise of the Follower 551 16.10 Use of Singularity Functions 553 16.11 Parabolic Rise Function .557 16.12 Sinusoidal Rise Function .560 16.13 Cycloidal Rise Function 563 16.14 Summary: Listing of Follower Rise Functions 56616.15 Closure .568 References .568 Problems .569 Chapter 17 Mechanical Components: Gears .573 17.1 Introduction .573 17.2 Preliminary and Fundamental Concepts: Rolling Wheels 573 17.3 Preliminary and Fundamental Concepts: Conjugate Action 575 17.4 Preliminary and Fundamental Concepts: Involute Curve Geometry .578 17.5 Spur Gear Nomenclature 581 17.6 Kinematics of Meshing Involute Spur Gear Teeth .584 17.7 Kinetics of Meshing Involute Spur Gear Teeth .588 17.8 Sliding and Rubbing between Contacting Involute Spur Gear Teeth 589 17.9 Involute Rack 591 17.10 Gear Drives and Gear Trains .592 17.11 Helical, Bevel, Spiral Bevel, and Worm Gears 595 17.12 Helical Gears .595 17.13 Bevel Gears 596 17.14 Hypoid and Worm Gears .597 17.15 Closure .599 17.16 Glossary of Gearing Terms .599 References .601 Problems .602 Chapter 18 Introduction to Multibody Dynamics 605 18.1 Introduction .605 18.2 Connection Configuration: Lower Body Arrays .605 18.3 A Pair of Typical Adjoining Bodies: Transformation Matrices .609 18.4 Transformation Matrix Derivatives .612 18.5 Euler Parameters 613 18.6 Rotation Dyadics 617 18.7 Transformation Matrices, Angular Velocity Components, and Euler Parameters 623 18.8 Degrees of Freedom, Coordinates, and Generalized Speeds 628 18.9 Transformations between Absolute and Relative Coordinates 632 18.10 Angular Velocity .635 18.11 Angular Acceleration .640 18.12 Joint and Mass Center Positions 643 18.13 Mass Center Velocities .645 18.14 Mass Center Accelerations 647 18.15 Kinetics: Applied (Active) Forces 647 18.16 Kinetics: Inertia (Passive) Forces .648 18.17 Multibody Dynamics .650 18.18 Closure .651 References .651 Problems .652 Chapter 19 Introduction to Robot Dynamics 661 19.1 Introduction .661 19.2 Geometry, Configuration, and Degrees of Freedom 661 19.3 Transformation Matrices and Configuration Graphs .66319.4 Angular Velocity of Robot Links .665 19.5 Partial Angular Velocities .667 19.6 Transformation Matrix Derivatives .668 19.7 Angular Acceleration of the Robot Links 668 19.8 Joint and Mass Center Position .669 19.9 Mass Center Velocities .671 19.10 Mass Center Partial Velocities 673 19.11 Mass Center Accelerations 673 19.12 End Effector Kinematics 674 19.13 Kinetics: Applied (Active) Forces 677 19.14 Kinetics: Passive (Inertia) Forces .680 19.15 Dynamics: Equations of Motion 681 19.16 Redundant Robots 682 19.17 Constraint Equations and Constraint Forces .684 19.18 Governing Equation Reduction and Solution: Use of Orthogonal Complement Arrays 687 19.19 Discussion, Concluding Remarks, and Closure 689 References .691 Problems .691 Chapter 20 Application with Biosystems, Human Body Dynamics .701 20.1 Introduction .701 20.2 Human Body Modeling 702 20.3 A Whole-Body Model: Preliminary Considerations 703 20.4 Kinematics: Coordinates .706 20.5 Kinematics: Velocities and Acceleration .709 20.6 Kinetics: Active Forces 715 20.7 Kinetics: Muscle and Joint Forces .716 20.8 Kinetics: Inertia Forces 719 20.9 Dynamics: Equations of Motion 721 20.10 Constrained Motion .722 20.11 Solutions of the Governing Equations .724 20.12 Discussion: Application and Future Development 727 References .730 Problems .731 Appendix I Centroid and Mass Center Location for Commonly Shaped Bodies with Uniform Mass Distribution .735 Appendix II Inertia Properties (Moments and Products of Inertia) for Commonly Shaped Bodies with Uniform Mass Distribution 743 Index .75 Index A Absolute orientation angles, 142 Acatastatic system, 690 Acceleration, 5, 59, 66 Accident reconstruction, 338 Action–reaction, 181, 241 Active forces, 2, 177, 244, 379, 647, 677, 715 Addendum, 581, 599 Addition theorem for angular velocity, 90 Adjoining bodies, 609 Adjoint, 40 Amplitude, 440 Angle, 9 Angle between two vectors, 23, 28 Angle of action, 584, 599 Angle of approach, 584, 599 Angle of contact, 584, 599 Angular acceleration, 83, 93, 640 Angular impulse, 280 Angular momentum, 282 Angular speed, 83 Angular velocity, 9, 83, 85, 635, 667 Anticyclic indices, 30 Antisymmetric matrix, 39 Applied forces, 177, 677 Articulation angles, 662, 688 Associative law, 18, 40 Axial pitch, 599 B Backlash, 582, 599 Balancing, 513 Ball-and-socket joint, 4 Base circle, 578, 599 Basic rack, 591 Bevel gears, 596, 599 Biceps, 716, 717 Biosystem, 701 Boltzmann-Hamel equations, 242, 243 Branching body, 608 Buridan, John, 241 C Cam-pair, 539 Cam profiles, 544 Cams, 5, 15, 539 Cam systems, 3 Cartesian coordinate system, 6, 8 Center of percussion, 298 Centroid, 735 Chord vector, 60 Circular frequency, 440 Circular pitch, 582, 599 Clearance, 583, 599 Closed loops, 606 Coefficient of restitution, 303 Column matrix, 39 Commutative law, 16, 23 Complete elliptic integral, 462 Components of vectors, 16, 19 Compression stroke, 529 Configuration graphs, 79, 614, 664 Conformable matrix, 39 Conjugate action, 575, 600 Connection configuration, 605 Conservation of momentum, 294, 301 Constrained motion, 722 Constraint equations, 125, 126, 684 Constraint forces, 684 Constraint matrix, 683 Constraints, 3, 125, 353 Contact forces, 180 Contact ratio, 585, 600 Coordinates, 6, 125, 353, 628 Couples, 170 Cross product, 29 Cyclic indices, 30 Cycloidal rise function, 563 Cylindrical coordinate system, 7 D d’ Alembert’s principle, 185, 242, 243, 262, 279, 290 Damped linear oscillator equation, 442 Dedendum, 581, 600 Degrees of freedom, 3, 125, 353, 628, 661 Derivative of transformation matrices, 612, 668754 Dynamics of Mechanical Systems Determinant, 40 Dextral rotation, 43 Dextral vectors, 30 Diagonal matrix, 39 Diametral pitch, 583 Dirac’s delta function, 554 Directed line segment, 5 Direct impact, 306 Direction cosines, 21 Direction of a vector, 5 Distributive law, 17, 25, 32, 40 Dot product, 23 Double-rod pendulum, 258, 381, 396, 418, 426 Driver, 3, 539 Driver gear, 574 Dwell, 542 Dyad, 203 Dyadic, 203 Dynamic balancing, 514 Dynamics, 1 Dynamic unbalance, 516 E Earth rotation effect, 89 Eigen unit vector, 209 Eigenvalue of inertia, 209 Elastic collision, 304 Elements of a matrix, 39 Elliptic integral 460 End effector, 661, 674, 692, 698 Ending body, 607-608 Energy, 9, 10 Equality of vectors, 15 Equivalent force systems, 170 Euler angles, 82 Euler parameters, 613, 707-709 Euler torque, 230 Exhaust stroke, 529 Extremity body, 607 F Fillet radius, 583 Finite segment model, 142 Firing order of internal combustion engines, 530 First integral, 459 First moments, 182 Fixed stars, 244 Fixed vector, 15 Follower, 3, 539 Follower gear, 574 Force, 2, 5, 9, 163 Forced vibration, 446, 449 Forcing function, 442 Four-bar linkage, 136 Four-stroke engines, balancing of, 528 Free-body diagram, 245-246 Free index, 38 Free vector, 15 Frequency, 440 G Gear drive, 592 Gear glossary, 599-601 Gears, 539, 573 Gear systems, 3 Gear train, 592 Generalized active force, 363 Generalized applied force, 363 Generalized coordinates, 242, 353 Generalized forces, 360 Generalized inertia forces, 360, 377 Generalized passive force, 377 Generalized speeds, 628 General plane motion, 129, 130 Gibbs equations, 243 Gibbs function, 243 Gravity forces, 177 Gripper, 661 Gross-motion model, 702 H Hamilton’s principle, 242 Helical gears, 595 Helix joint, 4 Holonomic constraint, 357 Human body dynamics, 702 Human body model, 704 Hypoid gears, 597 I Identity matrix, 39 Imbalance, 513 Impact, 303 Impulse, 279 Impulse-momentum, 242 Incomplete elliptic integral, 462 Inertia, 1, 2, 199, 241 Inertia coefficients, 651 Inertia ellipsoid, 228 Inertia forces, 177, 184, 243, 244, 248, 648, 680, 719 Inertial reference frame, 2, 185, 244 Inertia properties (common shapes), 743 Inertia torque, 228, 249-250 Infinitesimal stability, 479 Inside unit vector, 80 Instant center of zero acceleration, 150 Instant center of zero velocity, 133, 147Index 755 Intake stroke, 529 Integration algorithms, 688 Intermediate body, 608 Inverse matrix, 40 Involute curve, 578 Involute function, 579-581 Involute rack, 591 J Joint, 3 Joint forces, 716 Jourdain’s principle, 243 K Kane’s equations, 242, 243, 263, 415, 422, 435 Kane, T. R., 416, 460 Kinematic chain, 4 Kinematics, 1, 2, 57, 241 Kinetic energy, 327 Kinetics, 163, 241 Kronecker’s delta function, 24, 38, 42 Krylov and Bogoliuboff method, 463 L Lagrange multiplier, 224 Lagrange’s equations, 242, 262, 423, 435 Lagrange’s form of d’Alembert’s principle, 243, 416 Lagrangian, 242, 424 Lanchester balancing mechanism, 525 Law of action and reaction, 717 Law of conjugate action, 576 Linear impulse, 279 Linear momentum, 280 Linear oscillator equation, 246, 439 Linear rise function, 551 Line of action, 578 Line of centers, 585 Line of contact, 584 Link, 3 Linkage, 3 Logarithmic decrement, 471 Loop closure equation, 137 Lower body arrays, 605 M Machine, 3 Magnitude of a vector, 5, 15, 27 Mass, 2, 10, 241 Mass center, 177 Mass center locations (common shapes), 735 Mass density, 10 Mass-spring system, 336 Matrix, 39 Matrix inverse, 40 Maximum moment of inertia, 223 Mechanism, 3 Mesh, 575 Minimum moment of inertia, 223 Minimum moments, 175 Minor, 40 Mobile robot, 661 Modes of vibration, 455 Module, 583 Moment, 10, 163 Moment of inertia, 200, 743 Moment of momentum, 282 Momentum, 280 Motion on a circle, 66 Motion on a plane, 68 Multi-arm robot, 662 Multibody system, 258, 605 Muscle forces, 716 N Natural modes of vibration, 456 Newton, I., 241 Newton’s laws, 2, 241, 285, 287 Nonholonomic constraint, 357 Nonlinear vibrations, 458 Normal pitch, 585 N-rod pendulum, 260, 433 O Oblique impact, 306 Open-chain system, 606 Open-tree system, 606 Orientation angles, 79 Orientation of a vector, 5, 15 Orientation of bodies, 77, 84 Orthogonal complement arrays, 687, 689 Orthogonal matrix, 40 Orthogonal transformation, 42, 77 Outside unit vector, 80 P Parabolic rise function, 557 Parallel axis theorem, 206, 207 Parallelogram law, 16 Partial angular velocity, 359, 667 Partial angular velocity array, 639 Partial velocity, 359756 Dynamics of Mechanical Systems Partial velocity arrays, 651 Particle, 3, 57 Passive forces, 2, 177, 184, 244, 377, 680 Period, 440 Permutation symbol, 30 Perturbation, 479 Phase, 440 Pinion, 539 Pinion gear, 574, 597 Pitch circle, 576 Pitch point, 582 Pivoting, 107 Planar joint, 4 Planar motion, 128 Planetary gear system, 593 Planet gear, 593 Plastic collision, 304 Position, 58 Position vector, 8 Potential energy, 389 Power, 10, 327 Power stroke, 529 Power transmission, 573 Pressure, 10 Pressure angle, 542, 578 Pressure line, 578, 584 Principal axis of inertia, 208, 215 Principal moment of inertia, 208, 209 Principal unit vector, 209 Principle of angular momentum, 289 Principle of linear momentum, 285 Product of inertia, 200, 743 Projectile motion, 251 Projection of a vector, 24, 28, 31 Pure rolling, 107 Pythagorean theorem, 7 R Radius of gyration, 202 Reciprocating machines, balancing of, 520 Reduction of a force system, 171 Redundant robots, 661, 684 Reference frame, 3, 6, 41 Relative acceleration, 63, 97 Relative orientation angles, 137, 142 Relative velocity, 61, 97 Resultant, 16, 165 Right-hand rule, 29 Rigid body, 3 Ring gear, 594 Rise of cam follower, 543 Robot, 663 Robot arm, 663 Rod pendulum, 255, 380, 396, 418, 425 Rolling, 106 Rolling circular disk, 267 Rolling disk, 107, 357, 385, 399, 421, 488 Root circle, 581 Rotating pinned rod, 263 Rotating unit vectors, 63 Rotation, 129, 130 Rotation dyadics, 617 Routh-Hurwitz stability criteria, 505 Row–column product of matrices, 39 Row matrix, 39 S Scalar, 5, 9, 15 Scalar product, 23, 27 Scalar triple product, 33 Screw joint, 4 Second-moment vectors, 199 Sense of a vector, 5, 15 Simple angular velocity, 83, 87, 665 Simple chains, 4 Simple pendulum, 245, 324, 333, 365, 379, 395, 417, 424, 445, 459, 479 Singularity functions, 553 Singular matrix, 39 Sinistral vectors, 30 Sinusoidal rise function, 560 Sliding joint, 4 Sliding vector, 15 Solver, 688 Space, 2, 3 Speed, 63, 64 Spherical coordinate system, 7 Spherical joint, 4 Spiral angle, 597 Spiral bevel gears, 597 Spring forces, 178 Spur gear, 4, 581 Stability, 479 Static balancing, 513 Statics, 1 Stress, 10 Stroke, 528 Substitution symbol, 38 Summation convention, 37 Sun gear, 593 Symmetric matrix, 39 System of forces, 165 T Tensor, 204 Thrust bearing, 110 Time, 2 Torque, 10, 170 Transformation matrices, 78, 609, 663, 704 Transformation matrix derivatives, 612, 668 Translation, 129 Transmission, 540, 573 Transpose of a matrix, 39Index 757 Triple-rod pendulum, 260, 429 Tzu, Mo, 242 U Units, 9 Unit vector, 6, 15 Universal joint, 4 Unstable system, 482 V Vector, 5, 15 Vector addition, 16 Vector characteristics, 5, 57 Vector components, 16, 19 Vector differentiation, 57 Vector multiplication, 23, 28 Vector product, 28, 33 Vector space, 5 Vector subtraction, 17 Vector triple product, 33 Velocity, 5, 10, 59 Vibration, 439 Virtual work, 242 W Weight, 177 Wheel rolling over a step, 302, 341 Whole-body model, 701, 703 Work, 321 Work-energy, 242 Work-energy principles, 329 Worm gears, 597 Worm wheel, 598 Wrench, 173 Z Zero force systems, 170 Zero vector, 6, 15
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Dynamics of Mechanical Systems رابط مباشر لتنزيل كتاب Dynamics of Mechanical Systems
|
|