Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Model Predictive Control System Design and Implementation Using MATLAB الإثنين 29 أغسطس 2022, 11:58 pm | |
|
أخواني في الله أحضرت لكم كتاب Model Predictive Control System Design and Implementation Using MATLAB Liuping Wang
و المحتوى كما يلي :
Contents List of Symbols and Abbreviations . xxvii 1 Discrete-time MPC for Beginners . 1 1.1 Introduction 1 1.1.1 Day-to-day Application Example of Predictive Control . 1 1.1.2 Models Used in the Design . 3 1.2 State-space Models with Embedded Integrator 4 1.2.1 Single-input and Single-output System . 4 1.2.2 MATLAB Tutorial: Augmented Design Model . 6 1.3 Predictive Control within One Optimization Window 7 1.3.1 Prediction of State and Output Variables . 7 1.3.2 Optimization . 9 1.3.3 MATLAB Tutorial: Computation of MPC Gains 13 1.4 Receding Horizon Control 15 1.4.1 Closed-loop Control System 16 1.4.2 MATLAB Tutorial: Implementation of Receding Horizon Control 20 1.5 Predictive Control of MIMO Systems 22 1.5.1 General Formulation of the Model . 22 1.5.2 Solution of Predictive Control for MIMO Systems . 26 1.6 State Estimation 27 1.6.1 Basic Ideas About an Observer 28 1.6.2 Basic Results About Observability . 30 1.6.3 Kalman Filter 33 1.6.4 Tuning Observer Dynamics . 34 1.7 State Estimate Predictive Control . 34 1.8 Summary . 37 Problems . 39xxii Contents 2 Discrete-time MPC with Constraints 43 2.1 Introduction 43 2.2 Motivational Examples . 43 2.3 Formulation of Constrained Control Problems . 47 2.3.1 Frequently Used Operational Constraints . 47 2.3.2 Constraints as Part of the Optimal Solution 50 2.4 Numerical Solutions Using Quadratic Programming 53 2.4.1 Quadratic Programming for Equality Constraints 53 2.4.2 Minimization with Inequality Constraints . 58 2.4.3 Primal-Dual Method . 62 2.4.4 Hildreth’s Quadratic Programming Procedure . 63 2.4.5 MATLAB Tutorial: Hildreth’s Quadratic Programming 67 2.4.6 Closed-form Solution of λ∗ . 68 2.5 Predictive Control with Constraints on Input Variables . 69 2.5.1 Constraints on Rate of Change 70 2.5.2 Constraints on Amplitude of the Control . 73 2.5.3 Constraints on Amplitude and Rate of Change 77 2.5.4 Constraints on the Output Variable 78 2.6 Summary . 81 Problems . 83 3 Discrete-time MPC Using Laguerre Functions . 85 3.1 Introduction 85 3.2 Laguerre Functions and DMPC . 85 3.2.1 Discrete-time Laguerre Networks 86 3.2.2 Use of Laguerre Networks in System Description 90 3.2.3 MATLAB Tutorial: Use of Laguerre Functions in System Modelling . 90 3.3 Use of Laguerre Functions in DMPC Design 92 3.3.1 Design Framework . 93 3.3.2 Cost Functions 94 3.3.3 Minimization of the Objective Function 97 3.3.4 Convolution Sum 98 3.3.5 Receding Horizon Control 98 3.3.6 The Optimal Trajectory of Incremental Control . 99 3.4 Extension to MIMO Systems 106 3.5 MATLAB Tutorial Notes . 108 3.5.1 DMPC Computation . 108 3.5.2 Predictive Control System Simulation 115 3.6 Constrained Control Using Laguerre Functions 118 3.6.1 Constraints on the Difference of the Control Variable 118 3.6.2 Constraints on the Amplitudes of the Control Signal . 121 3.7 Stability Analysis 127 3.7.1 Stability with Terminal-State Constraints 127 3.7.2 Stability with Large Prediction Horizon 129Contents xxiii 3.8 Closed-form Solution of Constrained Control for SISO Systems 131 3.8.1 MATLAB Tutorial: Constrained Control of DC Motor . 135 3.9 Summary . 143 Problems . 144 4 Discrete-time MPC with Prescribed Degree of Stability . 149 4.1 Introduction 149 4.2 Finite Prediction Horizon: Re-visited 149 4.2.1 Motivational Example . 150 4.2.2 Origin of the Numerical Conditioning Problem 150 4.3 Use of Exponential Data Weighting 152 4.3.1 The Cost Function 152 4.3.2 Optimization of Exponentially Weighted Cost Function 153 4.3.3 Interpretation of Results from Exponential Weighting 156 4.4 Asymptotic Closed-loop Stability with Exponential Weighting . 158 4.4.1 Modification of Q and R Matrices . 158 4.4.2 Interpretation of the Results 160 4.5 Discrete-time MPC with Prescribed Degree of Stability . 165 4.6 Tuning Parameters for Closed-loop Performance . 170 4.6.1 The Relationship Between P∞ and Jmin 171 4.6.2 Tuning Procedure Once More . 176 4.7 Exponentially Weighted Constrained Control 179 4.8 Additional Benefit . 182 4.9 Summary . 186 Problems . 188 5 Continuous-time Orthonormal Basis Functions . 193 5.1 Introduction 193 5.2 Orthonormal Expansion 193 5.3 Laguerre Functions 194 5.4 Approximating Impulse Responses . 197 5.5 Kautz Functions . 202 5.5.1 Kautz Functions in the Time Domain 204 5.5.2 Modelling the System Impulse Response 205 5.6 Summary . 206 Problems . 207 6 Continuous-time MPC . 209 6.1 Introduction 209 6.2 Model Structures for CMPC Design 209 6.2.1 Model Structure . 211 6.2.2 Controllability and Observability of the Model 215 6.3 Model Predictive Control Using Finite Prediction Horizon 216 6.3.1 Modelling the Control Trajectory 217 6.3.2 Predicted Plant Response 218xxiv Contents 6.3.3 Analytical Solution of the Predicted Response 219 6.3.4 The Recursive Solution . 221 6.4 Optimal Control Strategy 224 6.5 Receding Horizon Control 227 6.6 Implementation of the Control Law in Digital Environment . 234 6.6.1 Estimation of the States 234 6.6.2 MATLAB Tutorial: Closed-loop Simulation . 237 6.7 Model Predictive Control Using Kautz Functions 240 6.8 Summary . 244 Problems . 245 7 Continuous-time MPC with Constraints . 249 7.1 Introduction 249 7.2 Formulation of the Constraints 249 7.2.1 Frequently Used Constraints 249 7.2.2 Constraints as Part of the Optimal Solution 251 7.3 Numerical Solutions for the Constrained Control Problem 257 7.4 Real-time Implementation of Continuous-time MPC . 262 7.5 Summary . 266 Problems . 267 8 Continuous-time MPC with Prescribed Degree of Stability 271 8.1 Introduction 271 8.2 Motivating Example . 271 8.3 CMPC Design Using Exponential Data Weighting . 274 8.4 CMPC with Asymptotic Stability . 277 8.5 Continuous-time MPC with Prescribed Degree of Stability 283 8.5.1 The Original Anderson and Moore’s Results 283 8.5.2 CMPC with a Prescribed Degree of Stability 284 8.5.3 Tuning Parameters and Design Procedure 286 8.6 Constrained Control with Exponential Data Weighting . 288 8.7 Summary . 291 Problems . 293 9 Classical MPC Systems in State-space Formulation 297 9.1 Introduction 297 9.2 Generalized Predictive Control in State-space Formulation 298 9.2.1 Special Class of Discrete-time State-space Structures . 298 9.2.2 General NMSS Structure for GPC Design 301 9.2.3 Generalized Predictive Control in State-space Formulation 302 9.3 Alternative Formulation to GPC 305 9.3.1 Alternative Formulation for SISO Systems 305 9.3.2 Closed-loop Poles of the Predictive Control System 307 9.3.3 Transfer Function Interpretation 310Contents xxv 9.4 Extension to MIMO Systems 313 9.4.1 MNSS Model for MIMO Systems 314 9.4.2 Case Study of NMSS Predictive Control System . 315 9.5 Continuous-time NMSS model 320 9.6 Case Studies for Continuous-time MPC 323 9.7 Predictive Control Using Impulse Response Models 326 9.8 Summary . 329 Problems . 330 10 Implementation of Predictive Control Systems . 333 10.1 Introduction 333 10.2 Predictive Control of DC Motor Using a Micro-controller . 333 10.2.1 Hardware Configuration 334 10.2.2 Model Development . 336 10.2.3 DMPC Tuning 337 10.2.4 DMPC Implementation 338 10.2.5 Experimental Results 339 10.3 Implementation of Predictive Control Using xPC Target 340 10.3.1 Overview . 340 10.3.2 Creating a SIMULINK Embedded Function . 342 10.3.3 Constrained Control of DC Motor Using xPC Target . 347 10.4 Control of Magnetic Bearing Systems 349 10.4.1 System Identification 351 10.4.2 Experimental Results 352 10.5 Continuous-time Predictive Control of Food Extruder 353 10.5.1 Experimental Setup . 355 10.5.2 Mathematical Models 357 10.5.3 Operation of the Model Predictive Controller . 358 10.5.4 Controller Tuning Parameters . 359 10.5.5 On-line Control Experiments 360 10.6 Summary . 365 References . 367 Index List of Symbols and Abbreviations Symbols a Scaling factor for discrete-time Laguerre functions arg min Minimizing argument A State matrix of state-space model B Input-to-state matrix of state-space model C State-to-output matrix of state-space model D Direct feed-through matrix of state-space model (A, B, C, D) State-space realization ΔU Parameter vector for the control sequence Δu(ki + m) future incremental control at sample m Δumin, Δumax Minimum and maximum limits for Δu F, Φ Pair of matrices used in the prediction equation Y = Fx(ki) + ΦΔU G(s) Transfer function model Iq ×q Identity matrix with appropriate dimensions J Performance index for optimization Klqr Feedback control gain using LQR K mpc Feedback control gain using MPC Kx State feedback control gain vector related to Δxm(·) or x˙ m(·) Ky State feedback control gain related to y Kob Observer gain vector κ(A) Condition number of A matrix li(·) The ith discrete or continuous-time Laguerre function L(·) Discrete and continuous-time Laguerre functions in vector form Li(s) Laplace transform of the ith continuous-time Laguerre function Li(z) z-transform of the ith discrete Laguerre function λ Lagrange multiplierxxviii List of Symbols and Abbreviations λi(A) The ith eigenvalue of matrix A m Number of inputs, also the mth future sample in discrete time M, γ Pair of matrix, vector for inequality constraints (Mx ≤ γ) N Number of terms used in Laguerre function expansion, both continuous and discrete time Nc Control horizon Np Prediction horizon om Zero vector with appropriate dimension ok Zero row vector (k = 1, 2, .) with appropriate dimensions o q×q q × q zero matrix o q×m q × m zero matrix Ω, Ψ Pair of matrices in the cost of predictive control J = ηTΩη + 2ηTΨx(·) + cons η Parameter vector in the Laguerre expansion p Scaling factor for continuous-time Laguerre functions Q, R Pair of weight matrices in the cost function of predictive control q−i Backward shift operator, q−i[f(k)] = f(k − i) q Number of outputs r(·) Set-point signal Sact Index set of active constraints Tp Prediction horizon in continuous-time u(·) Control signal umin, umax Minimum and maximum limits for u x(·) State variable x(ki + m | ki) Predicted state variable vector at sample time m, given current state x(ki) x(ti + τ | ti) Predicted state variable vector at time τ given current state x(ti) xˆ(·) Estimated state variable vector in both continuous and discrete-time y(·) Output signal Y Predicted output data vector ymin, ymax Minimum and maximum limits for y Abbreviations CMPC Continuous-time model predictive control DLQR Discrete-time linear quadratic regulatorList of Symbols and Abbreviations xxix DMPC Discrete-time model predictive control FIR Finite impulse response LQR Linear quadratic regulator MIMO Multiple-input, multiple-output SISO Single-input, single-output List of Symbols and Abbreviations Symbols a Scaling factor for discrete-time Laguerre functions arg min Minimizing argument A State matrix of state-space model B Input-to-state matrix of state-space model C State-to-output matrix of state-space model D Direct feed-through matrix of state-space model (A, B, C, D) State-space realization ΔU Parameter vector for the control sequence Δu(ki + m) future incremental control at sample m Δumin, Δumax Minimum and maximum limits for Δu F, Φ Pair of matrices used in the prediction equation Y = Fx(ki) + ΦΔU G(s) Transfer function model Iq ×q Identity matrix with appropriate dimensions J Performance index for optimization Klqr Feedback control gain using LQR K mpc Feedback control gain using MPC Kx State feedback control gain vector related to Δxm(·) or x˙ m(·) Ky State feedback control gain related to y Kob Observer gain vector κ(A) Condition number of A matrix li(·) The ith discrete or continuous-time Laguerre function L(·) Discrete and continuous-time Laguerre functions in vector form Li(s) Laplace transform of the ith continuous-time Laguerre function Li(z) z-transform of the ith discrete Laguerre function λ Lagrange multiplierxxviii List of Symbols and Abbreviations λi(A) The ith eigenvalue of matrix A m Number of inputs, also the mth future sample in discrete time M, γ Pair of matrix, vector for inequality constraints (Mx ≤ γ) N Number of terms used in Laguerre function expansion, both continuous and discrete time Nc Control horizon Np Prediction horizon om Zero vector with appropriate dimension ok Zero row vector (k = 1, 2, .) with appropriate dimensions o q×q q × q zero matrix o q×m q × m zero matrix Ω, Ψ Pair of matrices in the cost of predictive control J = ηTΩη + 2ηTΨx(·) + cons η Parameter vector in the Laguerre expansion p Scaling factor for continuous-time Laguerre functions Q, R Pair of weight matrices in the cost function of predictive control q−i Backward shift operator, q−i[f(k)] = f(k − i) q Number of outputs r(·) Set-point signal Sact Index set of active constraints Tp Prediction horizon in continuous-time u(·) Control signal umin, umax Minimum and maximum limits for u x(·) State variable x(ki + m | ki) Predicted state variable vector at sample time m, given current state x(ki) x(ti + τ | ti) Predicted state variable vector at time τ given current state x(ti) xˆ(·) Estimated state variable vector in both continuous and discrete-time y(·) Output signal Y Predicted output data vector ymin, ymax Minimum and maximum limits for y Abbreviations CMPC Continuous-time model predictive control DLQR Discrete-time linear quadratic regulatorList of Symbols and Abbreviations xxix DMPC Discrete-time model predictive control FIR Finite impulse response LQR Linear quadratic regulator MIMO Multiple-input, multiple-output SISO Single-input, single-output #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Model Predictive Control System Design and Implementation Using MATLAB رابط مباشر لتنزيل كتاب Model Predictive Control System Design and Implementation Using MATLAB
|
|