Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Essentials of the Finite Element Method - For Mechanical and Structural Engineers السبت 30 أبريل 2022, 5:43 am | |
|
أخواني في الله أحضرت لكم كتاب Essentials of the Finite Element Method - For Mechanical and Structural Engineers Dimitrios G. Pavlou, PhD Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, Norway
و المحتوى كما يلي :
Contents Preface xiii Acknowledgments . xv CHAPTER 1 An Overview of the Finite Element Method 1 1.1 What Are Finite Elements? 1 1.2 Why Finite Element Method Is Very Popular? . 1 1.3 Main Advantages of Finite Element Method 1 1.4 Main Disadvantages of Finite Element Method 1 1.5 What Is Structural Matrix? . 2 1.5.1 Stiffness Matrix 2 1.5.2 Transfer Matrix . 3 1.6 What Are the Steps to be Followed for Finite Element Method Analysis of Structure? . 3 1.6.1 Step 1. Discretize or Model the Structure . 4 1.6.2 Step 2. Define the Element Properties . 4 1.6.3 Step 3. Assemble the Element Structural Matrices . 4 1.6.4 Step 4. Apply the Loads . 4 1.6.5 Step 5. Define Boundary Conditions . 4 1.6.6 Step 6. Solve the System of Linear Algebraic Equations . 4 1.6.7 Step 7. Calculate Stresses . 4 1.7 What About the Available Software Packages? 4 1.8 Physical Principles in the Finite Element Method 5 1.9 From the Element Equation to the Structure Equation . 7 1.10 Computer-Aided Learning of the Finite Element Method 7 1.10.1 Introduction to CALFEM . 7 1.10.2 Spring elements 10 1.10.3 Bar Elements for Two-Dimensional Analysis . 11 1.10.4 Bar Elements for Three-Dimensional Analysis . 12 1.10.5 Beam Elements for Two-Dimensional Analysis 13 1.10.6 Beam Elements for Three-Dimensional Analysis 14 1.10.7 System Functions 15 1.10.8 Statement Functions . 15 1.10.9 Graphic Functions . 16 1.10.10 Working Environment in ANSYS 16 References 17 viiCHAPTER 2 Mathematical Background . 19 2.1 Vectors 19 2.1.1 Definition of Vector . 19 2.1.2 Scalar Product . 19 2.1.3 Vector Product 21 2.1.4 Rotation of Coordinate System 22 2.1.5 The Vector Differential Operator (Gradient) . 23 2.1.6 Green’s Theorem 23 2.2 Coordinate Systems 24 2.2.1 Rectangular (or Cartesian) Coordinate System 24 2.2.2 Cylindrical Coordinate System 25 2.2.3 Spherical Coordinate System . 25 2.2.4 Component Transformation 26 2.2.5 The Vector Differential Operator (Gradient) in Cylindrical and Spherical Coordinates . 28 2.3 Elements of Matrix Algebra . 28 2.3.1 Basic Definitions 28 2.3.2 Basic Operations . 29 2.4 Variational Formulation of Elasticity Problems 34 2.4.1 Definition of the Variation of a Function 34 2.4.2 Properties of Variations 35 2.4.3 Derivation of the Functional from the Boundary Value Problem . 35 References 40 CHAPTER 3 Linear Spring Elements . 41 3.1 The Element Equation 41 3.1.1 The Mechanical Behavior of the Material . 41 3.1.2 The Principle of Direct Equilibrium 42 3.2 The Stiffness Matrix of a System of Springs 43 3.2.1 Derivation of Element Matrices . 43 3.2.2 Expansion of Element Equations to the Degrees of Freedom of the Structure 44 3.2.3 Assembly of Element Equations 44 3.2.4 Derivation of the Field Values . 44 References 55 CHAPTER 4 Bar Elements and Hydraulic Networks . 57 4.1 Displacement Interpolation Functions . 57 4.1.1 Functional Form of Displacement Distribution . 57 4.1.2 Derivation of the Element Equation 59 viii Contents4.2 Alternative Procedure Based On the Principle of Direct Equilibrium 60 4.2.1 The Mechanical Behavior of the Material . 60 4.2.2 The Principle of Direct Equilibrium 61 4.3 Finite Element Method Modeling of a System of Bars 61 4.3.1 Derivation of Element Matrices . 62 4.3.2 Expansion of Element Equations to the Degrees of Freedom of the Structure 62 4.3.3 Assembly of Element Equations 63 4.3.4 Derivation of the Field Values . 63 4.4 Finite Elements Method Modeling of a Piping Network 67 References 79 CHAPTER 5 Trusses 81 5.1 The Element Equation for Plane Truss Members . 81 5.2 The Element Equation for 3D Trusses 83 5.3 Calculation of the Bar’s Axial Forces (Internal Forces) . 85 References 133 CHAPTER 6 Beams 135 6.1 Element Equation of a Two-Dimensional Beam Subjected to Nodal Forces 135 6.1.1 The Displacement Function 135 6.1.2 The Element Stiffness Matrix 137 6.2 Two-Dimensional Element Equation of a Beam Subjected to a Uniform Loading 150 6.3 Two-Dimensional Element Equation of a Beam Subjected to an Arbitrary Varying Loading 153 6.4 Two-Dimensional Element Equation of a Beam on Elastic Foundation Subjected to Uniform Loading . 176 6.5 Engineering Applications of the Element Equation of the Beam on Elastic Foundation 181 6.5.1 Beam Supported on Equispaced Elastic Springs . 181 6.5.2 Cylindrical Shells Under Axisymmetric Loading 181 6.6 Element Equation for a Beam Subjected to Torsion . 192 6.6.1 The Mechanical Behavior of the Material . 192 6.6.2 The Principle of Direct Equilibrium 193 6.7 Two-Dimensional Element Equation For a Beam Subjected To Nodal Axial Forces, Shear Forces, Bending Moments, and Torsional Moments . 194 Contents ix6.8 Three-Dimensional Element Equation for a Beam Subjected to Nodal Axial Forces, Shear Forces, Bending Moments, and Torsional Moments . 196 References 212 CHAPTER 7 Frames . 213 7.1 Framed Structures . 213 7.2 Two-Dimensional Frame Element Equation Subjected to Nodal Forces . 213 7.3 Two-Dimensional Frame Element Equation Subjected to Arbitrary Varying Loading . 217 7.4 Three-Dimensional Beam Element Equation Subjected to Nodal Forces 230 7.5 Distribution of Bending Moments, Shear Forces, Axial Forces, and Torsional Moments of Each Element . 234 References 278 CHAPTER 8 The Principle of Minimum Potential Energy for One-Dimensional Elements . 279 8.1 The Basic Concept . 279 8.2 Application of the MPE Principle on Systems of Spring Elements . 280 8.3 Application of the MPE Principle on Systems of Bar Elements 281 8.4 Application of the MPE Principle on Trusses . 284 8.5 Application of the MPE Principle on Beams 284 References 288 CHAPTER 9 From “Isotropic” to “Orthotropic” Plane Elements: Elasticity Equations for Two-Dimensional Solids . 289 9.1 The Generalized Hooke’s Law 289 9.1.1 Effects of Free Thermal Strains . 292 9.1.2 Effects of Free Moisture Strains 293 9.1.3 Plane Stress Constitutive Relations 295 9.2 From “Isotropic” to “Orthotropic” Plane Elements . 296 9.2.1 Coordinate Transformation of Stress and Strain Components for Orthotropic Two-Dimensional Elements . 298 9.3 Hooke’s Law of an Orthotropic Two-Dimensional Element, with Respect to the Global Coordinate System . 299 9.4 Transformation of Engineering Properties . 300 9.4.1 Elastic Properties of an Orthotropic Two-Dimensional Element in the Global Coordinate System . 300 9.4.2 Free Thermal and Free Moisture Strains in Global Coordinate System . 303 9.5 Elasticity Equations for Isotropic Solids . 305 x Contents9.5.1 Generalized Hooke’s Law for Isotropic Solids 305 9.5.2 Correlation of Strains with Displacements 307 9.5.3 Correlation of Stresses with Displacements 307 9.5.4 Differential Equations of Equilibrium . 308 9.5.5 Differential Equations in Terms of Displacements . 308 9.5.6 The Total Potential Energy 308 References 309 CHAPTER 10 The Principle of Minimum Potential Energy for Two-Dimensional and Three-Dimensional Elements 311 10.1 Interpolation and Shape Functions . 311 10.1.1 Linear Triangular Elements (or CST Elements) 316 10.1.2 Quadratic Triangular Elements (or LST Elements) . 318 10.1.3 Bilinear Rectangular Elements (or Q4 Elements) . 321 10.1.4 Tetrahedral Solid Elements 322 10.1.5 Eight-Node Rectangular Solid Elements . 326 10.1.6 Plate Bending Elements 328 10.2 Isoparametric Elements 332 10.2.1 Definition of Isoparametric Elements 332 10.2.2 Lagrange Polynomials 332 10.2.3 The Bilinear Quadrilateral Element . 333 10.3 Derivation of Stiffness Matrices 337 10.3.1 The Linear Triangular Element (or CST Element) . 337 10.3.2 The Quadratic Triangular Element (or LST Element) 339 10.3.3 The Bilinear Rectangular Element (or Q4 Element) . 339 10.3.4 The Tetrahedral Solid Element 339 10.3.5 Eight-Node Rectangular Solid Element . 339 10.3.6 Plate Bending Element . 339 10.3.7 Isoparametric Formulation . 340 References 371 CHAPTER 11 Structural Dynamics 373 11.1 The Dynamic Equation 373 11.2 Mass Matrix 374 11.2.1 Bar Element 374 11.2.2 Two-Dimensional Truss Element . 376 11.2.3 Three-Dimensional Truss Element . 379 11.2.4 Two-Dimensional Beam Element 382 11.2.5 Three-Dimensional Beam Element 383 Contents xi11.2.6 Inclined Two-Dimensional Beam Element (Two-Dimensional Frame Element) 385 11.2.7 Linear Triangular Element (CST Element) . 387 11.3 Solution Methodology for the Dynamic Equation 388 11.3.1 Central Difference Method . 388 11.3.2 Newmark-Beta Method 389 11.4 Free Vibration—Natural Frequencies 390 References 412 CHAPTER 12 Heat Transfer 413 12.1 Conduction Heat Transfer 413 2D Steady-State Heat Conduction Equation in Cartesian Coordinates 415 3D Steady-State Heat Conduction Equation in Cartesian Coordinates 415 3D Steady-State Heat Conduction Equation in Cylindrical Coordinates 416 3D Steady-State Heat Conduction Equation in Spherical Coordinates 417 Heat conduction of orthotropic materials 417 12.2 Convection Heat Transfer 420 12.3 Finite Element Formulation . 420 12.3.1 One-Dimensional Heat Transfer Modeling Using a Variational Method 420 12.3.2 Two-Dimensional and Three-Dimensional Heat Transfer Modeling Using a Variational Method . 435 References 477 Index 479 xii ContentsPref Index Note: Page numbers followed by b indicate boxes, f indicate figures and t indicate tables. A ANSYS, 16–17 axial force calculation, bars, 122b beams, 165b chip-cooling problem, 460b plane frame analysis, 257b plane stress problem using, 358b Axial force and torsional moment distributions, 234–277 B Bars, 11–12, 374–376 axial forces calculation ANSYS implementation, 122b boundary conditions, 92–94, 102–105, 116–117 CALFEM/MATLAB computer code, 121–122 degrees of freedom, 89–91, 100–101, 115–116 direction cosines calculation, 97–99 expanded stiffness matrices, 105b global stiffness matrix, 117–119 internal forces, 94–96 load vector, 116 local stiffness matrices, 86–89, 99–100 nodal displacements, 85–133 structure equation, 91–92, 101–102 displacement interpolation functions derivation of element equation, 59–60 functional form, 57–58 mechanical behavior of material, 60 principle of direct equilibrium, 60–61 dynamic loading, 394b finite element method modeling piping network, 67–79 system of bars, 61–67 free axial vibration, 391, 391f free longitudinal vibration, 393, 393f MPE principle on, 281–283 Beams, 13–15 arbitrary varying loading algebraic operations, 156 ANSYS, 165b boundary conditions, 154 derivation, 153 load matrix, 156–176, 157t MATLAB/CALFEM, 157b parameters, 156–176, 157t physical quantities, 154–155 shear force, 154 bending moments, 194–211 cylindrical shells under axisymmetric loading axisymmetric loads, 181, 182f equilibrium, 181–183, 182f FE analysis, 184b flexural rigidity, 183 foundation modulus, 183 Hooke’s law, 183 equispaced elastic springs, 181 MPE principle, 284–287 nodal axial forces, 194–211 nodal forces displacement function, 135–137 element stiffness matrix, 137–149 shear forces, 194–211 three-dimensional, 383–385 torsion mechanical behavior, 192–193 principle of direct equilibrium, 193 torsional moments, 194–211 two-dimensional, 382–383 uniform loading elastic foundation, 176–181 physical quantities, 151 shear forces, 150 Bending moment and shear force distributions, 234 Bilinear quadrilateral heat transfer isoparametric element, 441 Bilinear rectangular elements shape functions, 321f stiffness matrices, 339 Boundary value problem, 35–39 C Cable bridge analysis, MATLAB/CALFEM axial forces, 272–273 bar element matrices, 270–271 beam element matrices, 270 bending moments, 273 boundary conditions, 269 computer code, 275–277 deformed elements, 272 displacement field and support reactions, 271 479Cable bridge analysis, MATLAB/CALFEM (Continued) geometric data and elastic properties, 270 material and cross-section data, 269 shear forces, 273 stiffness matrix and load vector, 269 topology matrix, 269–271 undeformed elements, 271–272 CALFEM. See Computer aided learning of the finite element method (CALFEM) CALFEM/MATLAB bar’s axial forces calculation, 121–122 cable bridge analysis (see Cable bridge analysis, MATLAB/CALFEM) hydraulic network analysis, 51b plane frame analysis axial forces, 250–254 bending moments, 250–254 boundary conditions, 249 computer code, 256–257 data, 247–248 degrees of freedom, 248 displacement field, 249–250 global stiffness matrix, 249 load vector, 248–249 shear forces, 250–254 C0 continuous function, 314, 315f C1 continuous function, 314, 315f Central difference method, 388–389 Chip-cooling problem, ANSYS implementation, 460b Classical Kirchhoff thin plate theory, 328 Compliance matrix, 292 Component transformation, 26–28 Computer aided learning of the finite element method (CALFEM) advantage, 7–8 ANSYS, 16–17 bar elements, 11–12 beam elements, 13–15 element functions, 10 general purpose commands, 8 graphic functions, 16 material functions, 9 matrix functions, 8–9 spring elements, 10–11 statement functions, 15 system functions, 15 Conduction heat transfer 2D steady-state heat conduction equation, 415 3D steady-state heat conduction equation cartesian coordinates, 415, 416f cylindrical coordinates, 416, 416f spherical coordinates, 416f, 417–419 Fourier’s law for heat conduction, 312 Consistent-mass matrix, 376 beam element, 383 2D inclined beam element, 385–386 linear triangular element, 387 modified, 378 Convection heat transfer, 420, 420f Coordinate systems component transformation, 26–28 cylindrical, 25 rectangular, 24 spherical, 25 vector differential operator, 28 Cylindrical coordinate system, 25 Cylindrical shells under axisymmetric loading axisymmetric loads, 181, 182f equilibrium, 181–183, 182f FE analysis, 184b flexural rigidity, 183 foundation modulus, 183 Hooke’s law, 183 D D’Alambert’s principle, 375 Diagonal matrix, 29 Displacement function, 135–137 Displacement interpolation functions derivation of element equation, 59–60 functional form, 57–58 mechanical behavior of material, 60 principle of direct equilibrium, 60–61 E Eight-node isoparametric heat transfer 2D element, 442 Eight-node isoparametric heat transfer 3D element, 444 Eight-node rectangular solid elements shape functions, 326f stiffness matrices, 339 Eight-nodes brick element, 326, 326f Elasticity equations, for isotropic solids differential equations of equilibrium, 308 displacements differential equations, 308 strain correlation with, 307 stress correlation with, 307 generalized Hooke’s law, 305–307 total potential energy, 308–309 Element equation 3D trusses, 83–85 mechanical behavior, 41 plane truss members, 81–83 principle of direct equilibrium, 42–43 Element matrices, 43 480 IndexElement stiffness matrix, 137–149 Equispaced elastic springs, 181 Expanded stiffness matrix, 223–226 F Finite element method (FEM) advantages, 1 analysis of structure assembling, 4 boundary conditions, 4 discretization, 4 element properties, 4 linear algebraic equations, 4 loads, 4 stress calculation, 4 CALFEM advantage, 7–8 ANSYS, 16–17 bar elements, 11–12 beam elements, 13–15 element functions, 10 general purpose commands, 8 graphic functions, 16 material functions, 9 matrix functions, 8–9 spring elements, 10–11 statement functions, 15 system functions, 15 cylindrical shells under axisymmetric loading, 184b 3D beam problem bending moment distributions, 207–209 boundary conditions, 204–206 expanded local element equations, 202–203 global stiffness matrix, 203–204 local element equations, 200–202 shear force distributions, 209–211 system of equations, 206–207 torsional moment distributions, 211 description, 1 disadvantages, 1–2 element equation, 7 physical principles, 5–7 piping network boundary conditions, 71 CALFEM/MATLAB, 72b degrees of freedom, 69 fluid viscosity, 67–68 local element equations, 68 nodal variables, 67 submatrix, 70–71 software packages, 4–5 structural matrix stiffness matrix, 2 transfer matrix, 3 system of bars assembly of element equations, 63 derivation of element matrices, 62 derivation of field values, 63–67 expansion of element equations, 62–63 Fourier’s law for heat conduction, 312 Four-node thin plate element, 328, 328f Frames. See also Plane frame analysis beams, 213, 214f MATLAB/CALFEM, 406b two-dimensional element equation arbitrary varying loading, 217–229 nodal forces, 213–217 Free axial vibration, bar, 391, 391f Free longitudinal vibration, bar, 393, 393f Free moisture strains generalized Hooke’s law, 293–294 transformation, 304–305 Free thermal strains generalized Hooke’s law, 292–293 transformation, 304–305 Free vibration, 390–412 natural circular frequency, 373 G Gauss Quadrature method, 340–371 Generalized Hooke’s law, 289–296 effects of free moisture strains, 293–294 free thermal strains, 292–293 isotropic solids, 305–307 plane stress constitutive relations, 295–296 Global stiffness matrix, 226 Green’s theorem, 23–24 H Heat exchanger, 429b Heat transfer conduction (see Conduction heat transfer) convection heat transfer, 420, 420f 2D and 3D modeling, 435–436 bilinear quadrilateral heat transfer isoparametric element, 441 eight-node isoparametric heat transfer 2D element, 442 eight-node isoparametric heat transfer 3D element, 444 linear triangular heat transfer element, 436 1D finite element modeling, 420–435 in heat exchanger, 429b Index 481Heat transfer (Continued) modes of, 413, 414f temperature distribution, in 2D problem, 446b through multilayered wall, 424b I Inclined bar element, 385–387 Isoparametric elements bilinear quadrilateral element, 333–336 definition of, 332 Lagrange polynomials, 332–333 stiffness matrices, 340–371 Isotropic solids, elasticity equations differential equations of equilibrium, 308 displacements differential equations, 308 strain correlation with, 307 stress correlation with, 307 generalized Hooke’s law, 305–307 total potential energy, 308–309 Isotropic-to-orthotropic plane elements, 296–298 L Linear interpolation, shape functions, 313, 313f Linear spring elements element equation mechanical behavior, 41 principle of direct equilibrium, 42–43 stiffness matrix assembly of element equations, 44 derivation, 43 derivation of field values, 44–55 expansion of element equations, 44 Linear triangular elements, 341, 387 algebraic equations and results, 347–348 boundary conditions, 345–347 global matrix, 345 heat transfer element applied heat flux, 440 convection, 439 coordinates vector, 436 coordinate system, 436, 437f elements area, 437 heat convection losses, 440 load vectors, 439–440 matrix [B] derivation, 437 stiffness matrix, 437–438 thermal conductivity matrix, 436–437 vector of nodal temperatures, 437 shape functions, 316–318, 316f stiffness matrix, 337–338, 342–345 stresses, 348 Lumped-mass matrix, 375 M Mapped plane element, 333f, 334 Mass matrix, 373 bar element, 374–376 inclined bar element, 385–387 linear triangular element, 387 three-dimensional beam element, 383–385 three-dimensional truss element, 379–382 two-dimensional beam element, 382–383 two-dimensional truss element, 376–379 Mass-spring system, dynamic response, 373, 374f MATLAB/CALFEM. See also CALFEM/MATLAB beams boundary conditions, 158–159 computation of displacements, 161 computer code, 164 degrees of freedom, 158 displacement field, 160–161 global stiffness matrix, 159–160 graphical representation of displacements, 161–163 load vector, 158 frames dynamic response, 406b Matrix algebra definitions, 28–29 operations, 29–34 Maxwell-Betti Reciprocal Theorem, 291 Mindlin bending theories, 328 Minimum potential energy (MPE) principle, 34 on beams, 284–287 mathematical expression of, 279 on systems of bar elements, 281–283 on systems of spring elements, 280–281 on trusses, 284 Modified consistent-mass matrix, 378 Moisture expansion coefficients transformation, in global coordinate system, 303–304 MPE principle. See Minimum potential energy (MPE) principle N Newmark-Beta method, 389–390 O 1D heat transfer finite element modeling, 420–435 Orthotropic elasticity, plane structural elements, 296–297, 297f Orthotropic thermal conductivity coefficients, 419–420, 419f Orthotropic two-dimensional elements elastic properties of, 300–302 Hooke’s law, 299 stress and strain components, coordinate transformation of, 298, 298f 482 IndexP Physical plane element, 333, 333f Plane frame analysis axial forces, 250–254 bending moments, 250–254 boundary conditions, 249 computer code, 256–257 data, 247–248 degrees of freedom, 248 displacement field, 249–250 global stiffness matrix, 249 load vector, 248–249 shear forces, 250–254 Plane stress problem, using ANSYS, 358b Plane truss members, 81–83 Plate bending elements shape functions, 328–331 stiffness matrices, 339 Poisson’s ratio, orthotropic 2D elements, 300 Principle of direct equilibrium, 42–43, 60–61, 193 Q Quadratic interpolation, shape functions, 314, 314f Quadratic triangular elements shape functions, 318–320, 319f stiffness matrices, 339 R Rectangular/cartesian coordinate system, 24 S Sationary potential energy principle, 279 Shape functions, 311–331 bilinear rectangular elements, 321–322, 321f eight-node rectangular solid elements, 326–328, 326f for linear interpolation, 313, 313f linear triangular elements, 316–318, 316f plate bending elements, 328–331 for quadratic interpolation, 314, 314f quadratic triangular elements, 318–320, 319f tetrahedral solid elements, 322–326, 323f Spherical coordinate system, 25 Spring elements, 10–11 MPE principle on, 280–281 Stiffness matrix, 2, 292, 348b, 354b assembly of element equations, 44 bilinear rectangular element, 339 derivation, 43 derivation of field values boundary conditions, 45 final solution, 45–55 simple structure composed of springs, 51b structural system, 46b eight-node rectangular solid element, 339 expansion of element equations, 44 isoparametric formulation, 340–371 linear triangular element, 337–338 plate bending element, 339 quadratic triangular element, 339 tetrahedral solid element, 339 Structural dynamics dynamic equation, 373 central difference method, 388–389 Newmark-Beta method, 389–390 Structural matrix stiffness matrix, 2 transfer matrix, 3 Symmetric matrix, 29 T Temperature distribution, in 2D heat transfer problem, 446b Tetrahedral solid elements shape functions, 322–326, 323f stiffness matrices, 339 Thermal equilibrium, in one-dimensional element, 413, 414f Thermal expansion coefficients transformation, in global coordinate system, 303–304, 304f 3D beam problem, FE analysis bending moment distributions, 207–209 boundary conditions, 204–206 expanded local element equations, 202–203 global stiffness matrix, 203–204 local element equations, 200–202 shear force distributions, 209–211 system of equations, 206–207 torsional moment distributions, 211 Three-dimensional beam element, 383–385 Three-dimensional beam element equation, 230–233 Three-dimensional truss element, 379–382 3D steady-state heat conduction equation cartesian coordinates, 415, 416f cylindrical coordinates, 416, 416f spherical coordinates, 416f, 417–419 3D trusses, 83–85 Transfer matrix, 3 Translational nodal motions, beam element, 383–384, 383f Trusses bar’s axial forces ANSYS implementation, 122b boundary conditions, 92–94, 102–105, 116–117 CALFEM/MATLAB computer code, 121–122 degrees of freedom, 89–91, 100–101, 115–116 direction cosines calculation, 97–99 expanded stiffness matrices, 105b global stiffness matrix, 117–119 Index 483Trusses (Continued) internal forces, 94–96 load vector, 116 local stiffness matrices, 86–89, 99–100 nodal displacements, 85–133 structure equation, 91–92, 101–102 element equation 3D system, 83–85 plane members, 81–83 MPE principle on, 284 three-dimensional, 83–85, 376–382 two-dimensional, 376–379 2D and 3D heat transfer modeling, 435–436 bilinear quadrilateral heat transfer isoparametric element, 441 eight-node isoparametric heat transfer 2D element, 442 eight-node isoparametric heat transfer 3D element, 444 linear triangular heat transfer element, 436 Two-dimensional beam element, 382–383 Two-dimensional frame element. See Inclined two-dimensional beam element Two-dimensional frame element equation arbitrary varying loading algebraic system, 228–229 ANSYS, 257b axial force and torsional moment distributions, 234–277 bending moment and shear force distributions, 234 boundary conditions, 226–228 cable bridge analysis, 270 CALFEM/MATLAB, 247b equivalent nodal forces, 219, 219f expanded stiffness matrix, 223–226 force matrix, 217, 218t geometric parameters, 235 global stiffness matrix, 226 inclined element, 217, 217f local load vectors, 222–223 local stiffness matrices, 221–222 slopes and lengths calculation, 220–221 three-dimensional beam element equation, 230–233 nodal forces axial deflections, 215–216 global coordinate system, 213 moments, 215 nodal parameters, 217 transformation of displacements, 213, 214f 2D orthotropic material, principal coordinate system for, 417, 417f 2D steady-state heat conduction equation, 415 U Unit matrix, 29 V Variational method 2D and 3D heat transfer modeling, 435–436 bilinear quadrilateral heat transfer isoparametric element, 441 eight-node isoparametric heat transfer 2D element, 442 eight-node isoparametric heat transfer 3D element, 444 linear triangular heat transfer element, 436 formulation of elasticity problems boundary value problem, 35–39 definition, 34 properties, 35 variational principle, 279 (see also Minimum potential energy (MPE) principle) Vectors definition, 19 Green’s theorem, 23–24 rotation of coordinate system, 22–23 scalar product, 19–20 vector differential operator, 23, 28 vector product, 21 W Winkler foundation, 176 Z Zero matrix, 29
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Essentials of the Finite Element Method - For Mechanical and Structural Engineers رابط مباشر لتنزيل كتاب Essentials of the Finite Element Method - For Mechanical and Structural Engineers
|
|