Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mechanical Properties of Materials الثلاثاء 04 أكتوبر 2022, 4:53 am | |
|
أخواني في الله أحضرت لكم كتاب Mechanical Properties of Materials Joshua Pelleg
و المحتوى كما يلي :
Contents 1 Mechanical Testing of Materials . 1 1.1 Introduction 1 1.2 The Tension Test . 2 1.2.1 Elastic Deformation and the Relations Between Stress and Strain . 3 1.2.2 The Elastic and Proportional Limits 13 1.2.3 Plastic Deformation 14 1.2.4 The True Stress/Strain Relation . 16 1.2.5 Elongation 18 1.2.6 The Reduction of Area . 19 1.2.7 Necking . 20 1.2.8 Instability in Tension . 20 1.2.9 The Shear Stress and Shear Strain 23 1.2.10 The Elastic Strain Energy 25 1.2.11 Resilience . 27 1.2.12 Toughness 28 1.2.13 Fracture Stress 29 1.3 Compression Stress 30 1.3.1 Introduction 30 1.3.2 The Compression of Brittle Materials . 30 1.3.3 The Compression of Ductile Materials . 31 1.3.4 The Effect of Hydrostatic Pressure on Compression . 34 1.4 The Hardness Test . 36 1.4.1 Indentation by Spherical (Ball) Indenters . 37 1.4.2 Indentation by Pyramid and Cone Indenters 43 1.4.3 Indentation by Cone (or Spherical) Indenters 46 1.4.4 Comments on Hardness Tests . 50 1.5 The Torsion Test (Shear) 50 1.5.1 Torsion in the Elastic Region 51 1.5.2 Torsion in the Plastic Region 55 ixx Contents 1.5.3 Axial Change in Torsion . 62 1.5.4 Fracture by Torsion Test . 63 1.6 The Impact Tests . 64 1.7 Anelasticity 69 1.7.1 Introduction 69 1.7.2 The Elastic After Effect 70 1.7.3 The Thermoelastic Effect 71 1.7.4 Energy Losses/Hysteresis Loop . 73 1.7.5 Internal Friction 73 Appendix I . 78 Appendix II 80 References . 84 2 Introduction to Dislocations 85 2.1 Introduction 85 2.2 The Theoretical Strength of Crystals . 86 2.3 Seeing (Dislocations) Is Believing 88 2.3.1 Etch Pits 89 2.3.2 Transmission Electron Microscopy (TEM) . 92 2.3.3 Field Ion Microscopy (FIM) . 95 2.4 The Geometrical Characterization of Dislocations . 97 2.5 The Formation of Dislocations 101 2.6 The Motion of Dislocations . 103 2.6.1 Conservative Motion . 105 2.6.2 Non-conservative Motion (Climb) 108 2.7 The Energy of Dislocations . 110 2.7.1 Screw Dislocation 112 2.7.2 Edge Dislocation . 114 2.8 Line Tension . 117 2.9 The Stress Field of a Dislocation . 118 2.9.1 Screw Dislocations . 118 2.9.2 Edge Dislocations 120 2.10 The Forces Acting on Dislocations . 122 2.10.1 The Glide Forces . 122 2.10.2 Climb . 124 2.11 The Forces Between Dislocations 125 2.11.1 Screw Dislocations . 125 2.11.2 Edge Dislocations 126 2.12 The Intersection of Dislocations 127 2.13 Dislocation Multiplication 130 2.14 Partial Dislocations 132 2.14.1 Shockley Partial Dislocations . 133 2.14.2 Frank Partial Dislocations . 136 2.14.3 The Cross Slip of Partial Dislocations 138 2.14.4 The Thompson Tetrahedron . 139 2.14.5 Lomer-Cottrell Locks 140Contents xi 2.15 Dislocation Pile-Ups . 141 2.16 Low (Small)-Angle Grain Boundaries 143 References . 145 3 Plastic Deformation 147 3.1 Introduction 147 3.2 Critical Resolved Shear Stress (CRSS) . 147 3.3 Slip . 151 3.3.1 FCC Structures . 151 3.3.2 BCC Structures . 152 3.3.3 HCP Structures . 153 3.4 The Slip in Polycrystalline Materials . 155 3.5 Twinning . 157 3.6 Yield Phenomena 163 3.6.1 Introduction 163 3.6.2 Sharp Yield . 164 3.6.3 L¨ uders Bands . 165 3.6.4 Stain Aging . 166 3.6.5 The Cottrell-Bilby Theory . 169 3.7 The Bauschinger Effect (BE) . 179 3.8 The Effect of Impurity (Solute), Temperature and Orientation 180 3.9 Polygonization . 184 3.10 Deformation in Polycrystalline Materials 186 3.10.1 Preferred Orientation (Texture) 188 3.10.2 The Bauschinger Effect (BE) 190 3.11 Grain Boundaries 192 References . 193 4 Strengthening Mechanisms . 195 4.1 Introduction 195 4.2 Strain Hardening . 196 4.2.1 Stage I 197 4.2.2 Stage II . 205 4.2.3 Stage III (Dynamic Recovery) . 210 4.3 Microstructure . 214 4.4 Theories of Strain Hardening . 217 4.4.1 Stage I 219 4.4.2 Stage II . 223 4.4.3 Stage III 233 4.5 Strain Hardening in Polycrystalline Materials . 234 4.6 Solid Solution Strengthening 236 4.6.1 Introduction 236 4.6.2 Strengthening by Interstitial Atoms . 237 4.6.3 Strengthening by Substitution Atoms . 237 4.7 Grain Boundaries and Grain Size . 239xii Contents 4.8 Second-Phase Hardening (Precipitates and/or Other Particles) . 246 4.8.1 Introduction 246 4.8.2 Orowan Loop Formation 247 4.8.3 The Strength of Obstacles and Break-Away Stress . 249 4.8.4 Cutting Through the Second Phase . 252 4.8.5 The Mott-Nabarro Concept 253 4.8.6 Summary of Second-Phase Strengthening 255 References . 256 5 Time Dependent Deformation – Creep 259 5.1 Introduction 259 5.2 Creep in Single Crystals . 260 5.3 Creep in Polycrystalline Materials 272 5.4 Mechanisms of Creep . 282 5.4.1 Nabarro-Herring Creep 284 5.4.2 Dislocation Creep and Climb 288 5.4.3 Climb-Controlled Creep . 288 5.4.4 Glide via Cross-Slip . 291 5.4.5 Coble Creep 296 5.5 Grain-Boundary Sliding . 298 5.6 Creep Rupture 307 5.7 Recovery (Relaxation) . 314 5.8 The Prediction of Life-Time (Parametric Method) . 318 5.8.1 The Larson-Miller Approach 318 5.8.2 The Manson-Haferd Approach 321 5.8.3 The Orr-Sherby-Dorn (OSD) Approach 325 5.8.4 The Monkman-Grant Approach . 329 5.9 Concepts of Designing (Selecting) Creep-Resistant Materials 332 References . 335 6 Cyclic Stress – Fatigue . 339 6.1 Introduction 339 6.2 The Endurance Limit; S-N Curves 340 6.2.1 The Endurance Limit in Ferrous Metals 345 6.2.2 The Endurance Limit in Non-ferrous Metals . 346 6.3 The Stress Cycles 347 6.3.1 Low-Cycle Fatigue Tests 348 6.3.2 High-Cycle Fatigue Tests 353 6.3.3 Very High Cycle Tests . 353 6.4 Fatigue Life 354 6.4.1 The Stress-Based Approach . 354 6.4.2 Strain-Based Life-Times . 355 6.5 Work Hardening (Softening) 360 6.6 Hysteresis 371 6.7 The Mean Stress . 381Contents xiii 6.8 Underloading (UL), Overloading (OL), Coaxing and Cumulative Damage 385 6.8.1 Underloading (UL) . 385 6.8.2 Overloading (OL) 387 6.8.3 Coaxing . 391 6.8.4 Cumulative Damage . 392 6.8.5 Variable-Amplitude Loading (Intermittent Loading) . 395 6.9 Structural Observations in Fatigued Specimens 398 6.9.1 Progression Markings (Beach Marks) and Striations 398 6.9.2 The Dislocation Structure in Fatigue 400 6.10 The Notch Effect . 411 6.11 Failure Resulting from Cyclic Deformation (Fracture by Fatigue) 415 6.12 The Effects of Some Materials and Process Variables . 416 6.12.1 Surface Effects on Fatigue . 416 6.12.2 The Residual Stresses 417 6.12.3 Introduction to Residual Stresses 418 6.13 Miscellaneous Variables . 425 6.13.1 Grain Size 426 6.13.2 The Effect of Temperature . 430 6.13.3 Specimen Size 432 6.13.4 The Environment . 434 6.14 Thermal Fatigue . 436 6.15 Design for Fatigue . 442 References . 444 7 Fracture . 449 7.1 Introduction 449 7.2 Fracture Types . 451 7.3 Brittle Fracture . 454 7.4 Theories of Brittle Fracture . 455 7.4.1 Griffith’s Theory on Fracture 456 7.4.2 Orowan’s Fracture Theory . 459 7.4.3 Brittle Fracture in Crystalline Materials 461 7.4.4 The Dislocation Theory of Brittle Fracture . 462 7.5 Factors Causing Embrittlement . 465 7.5.1 Liquid Metal Embrittlement (LME) 465 7.5.2 Hydrogen Embrittlement (HE) 466 7.5.3 Aqueous-Environment Embrittlement (AEE) or Stress-Corrosion Cracking 471 7.5.4 Temper Embrittlement (TE) . 474 7.6 Fracture Toughness 479 7.7 Ductile Fracture 490 7.7.1 Introduction 490 7.7.2 The Process of Neck Formation . 491xiv Contents 7.8 Ductile-to-Brittle Transition (Transition Temperature) 504 7.8.1 Introduction 504 7.8.2 The Features 505 7.9 Fatigue Fracture 509 7.9.1 Crack-Tip Blunting 509 7.9.2 The Effect of Inclusion 512 References . 518 8 Mechanical Behavior in the Micron and Submicron/Nano Range . 521 8.1 Introduction 521 8.2 Mechanical Behavior in the Small-Size Range 521 8.2.1 An Explanation of the Size Effect . 522 8.3 The Static Properties . 523 8.3.1 Single Crystals . 523 8.3.2 Polycrystalline Materials 530 8.3.3 Thin Films 533 8.3.4 Free-Standing Films . 544 8.3.5 Whiskers 549 8.3.6 Twinning . 553 8.3.7 The Hall-Petch Relation (H-P) in Materials of Small Dimensions 564 8.3.8 Superplasticity . 569 8.4 Time-Dependent Deformation (Creep) . 584 8.5 Fatigue Behavior . 597 8.5.1 Introduction 597 8.5.2 Fatigue in Micron-/Submicron-Sized Materials 597 8.5.3 The Fatigue of Nanocrystalline (NC) Materials 608 8.6 Fracture . 614 8.6.1 Introduction 614 8.6.2 The Characteristics . 615 8.7 Epilogue 623 Reference 624 Index . 629Chapter 1 Index A Activation energy, 125, 139, 268, 274, 275, 278, 283, 290, 292, 293, 300, 310, 313, 319, 325, 326, 329, 568, 569, 590 Anelasticity adiabatic loading, 72, 74 damping, 71–74, 76–78, 82–84 elastic after effect, 70–71 energy losses, 73 hysteresis loop, 71–75 internal friction, 73–78 isothermal loading, 71 modulus effect, 70 thermoelastic effect, 71–73 B Bauschinger effect, 179–180, 190–192, 371, 372 Bauschinger effect in polycrystalline material, 179, 190 Bulk (or volumetric) modulus, 11, 12, 17 Burgers circuit, 98–101 Burgers vector, 98–101, 108, 115, 116, 119, 121, 122, 124, 125, 127–130, 133–135, 137, 138, 140–143, 153, 157, 162, 176, 219, 232, 241, 265, 291, 293, 294, 460–462, 520, 521, 526, 539, 555 C Climb, 86, 89, 108–110, 122–125, 127, 129, 130, 136, 138, 142, 185, 212, 265, 273–275, 282–284, 288–295, 299, 315–317, 333, 334 Compression brittle materials, 30, 31, 35 ductile materials, 31–34, 510 hydrostatic pressure, 34–36 Considere’s construction, 22 ´ Cottrell-Bilby theory, 169–179 Creep (time dependent deformation) climb controlled creep, 288–292 coble creep, 284, 296–298, 563, 583, 584, 590–594 concepts of designing (creep resistant materials), 260, 333, 335 Glide via cross slip, 284, 288, 291–296 Grain boundary sliding, 239, 259, 260, 263, 273, 275, 282, 283, 296, 298–307 in polycrystalline material, 147, 239, 260, 264, 272–282, 298, 300, 315, 332, 334, 592, 593 in single crystals, 147, 182, 239, 259–272, 275, 278, 292, 293, 334, 521–528 life time Mandon-Haferd, 318 Monkman-Grant, 318, 329, 330, 332 Sherby-Dorn, 318, 325 mechanism of creep, 283, 592 Nabarro-Herring creep, 273, 283–288 recovery (relaxation), 260, 262, 265–267, 281, 283, 289, 291, 299, 310, 314–318 rupture, 260, 299, 307–314, 319–322, 327, 328, 331 Critical resolved shear stress (CRSS), 147–151, 155, 157, 158, 181, 183, 191, 197, 204, 210, 213, 218, 234, 240, 245, 255, 293, 524 Cutting through the second phase, 252–253 D Deformation effects of solute, temperature and orientation, 180 elastic, 3–15, 17, 24, 25, 27–30, 35, 42, 51, 70, 77, 86, 102, 147, 163, 164, 167, 191, 196, 204, 208, 262, 288, 348, 371, 391, 392, 452, 460, 461, 500, 531, 533, 534, 538, 543, 546, 581, 612, 622 plastic, 13–16, 19, 23, 29, 30, 36, 42, 63, 67, 86, 103–105, 110, 147–193, 196, 197, 228, 239, 259, 284, 316, 339, 370, 391, 392, 417, 449, 452, 457, 459, 460, 463, 466, 484, 490, 492, 494, 495, 500, 509, 520, 522, 528, 531, 543, 545, 546, 558, 566, 578–581, 592–594, 597, 605, 610, 612, 613, 616–621 polycrystalline materials, 103, 147, 150, 155–157, 184, 186–192, 202, 209, 211, 234–236, 239, 240, 244–246, 260, 264, 298, 300, 315, 332, 416, 528–531, 582, 592, 593, 613 twinning, 159, 160, 524, 578, 618 Dislocations back stress, 141, 142, 192, 223, 241, 521, 540 burgers circuit, 98–101 burgers vector, 98–101, 108, 115, 116, 119, 121, 122, 124, 128, 133, 134, 137, 138, 140–143, 162, 176, 219, 232, 241, 265, 291, 293, 294, 460–463, 521, 539, 555 cell structure, 55, 93, 215, 216, 266, 373, 374, 379, 381, 400–402, 405, 406, 494, 496 climb, 86, 108, 109, 124, 273–275, 289, 290, 299, 315 conservative motion, 105–108 core energy, 111, 114, 144, 145, 192 creep, 278, 284, 288, 586, 589, 591 cross slip of partials, 138–139 easy glide, 130, 196, 197, 210, 214–216, 550 edge dislocation, 97–99, 101, 102, 105–108, 112, 114–116, 120–122, 124, 126–128, 130, 138, 142–144, 171–173, 178, 179, 185, 192, 212, 219, 221, 231, 237, 241, 289, 291, 293, 317, 460–462, 507 energy of dislocation, 110–112, 115 etch pits, 86, 89–92, 165, 197, 214 field ion microscopy (FIM), 86, 95–96 forces between dislocations, 125–127 forces on dislocations, 141, 254 formation, 92, 103, 318, 566 Frank partial dislocations, 136–138, 140 Frank-Read source, 131, 132, 141, 227 general (or mixed) dislocation, 97, 115, 116, 121, 122, 205 geometrical characterization, 97–101 glide, 89, 104, 105, 108–110, 122–124, 127, 128, 130, 131, 136–138, 140, 141, 176, 177, 186, 196, 197, 206, 210, 212–216, 218, 223, 225, 227, 229, 231, 233, 235, 237–240, 252, 254, 255, 261, 265, 273, 282, 284, 288, 289, 291–296, 315, 317, 333, 371, 379, 462, 520, 521, 524, 534, 555, 556, 581 glissile, 110, 136, 229, 520 intersection of dislocations, 127–130 Jog, 108–110, 124, 125, 127–130, 132, 193, 219, 223, 229–231, 233, 235, 315, 402 kink, 108, 127–130 line tension, 117–118, 122, 131, 132, 248, 249 Lomer-Cottrell locks, 140–141, 223, 225 low (small)angle grain boundaries, 89, 92, 143–145, 159, 192, 193, 315 motion, 73, 86, 105, 106, 110, 151, 165, 186, 187, 192, 196, 206, 216, 217, 219, 237–241, 246, 248, 254, 255, 260, 264, 265, 281, 288, 289, 300, 332, 334, 379, 381, 452, 534, 539, 558, 582, 616, 618 multiplication, 118, 130–132, 276, 534, 612, 620 non-conservative motion, 108–110, 229 partial dislocations, 133, 135, 141, 566, 580, 581 pile-ups, 86, 92, 141–142, 155, 179, 186, 221, 227, 231, 240, 241, 289, 500, 507, 521, 540 screw dislocations, 97, 98, 101, 102, 105, 108, 109, 112–116, 118–120, 122, 125–126, 129, 130, 138, 139, 144, 178, 179, 192, 212, 215, 216, 229, 233, 237, 238, 291–293, 315, 317, 461, 548 seeing dislocations, 88–97 sessile, 110, 137, 141, 221, 229 Shockley partial dislocations, 133–136, 140 slip, 160, 191, 193, 205, 210, 240, 245, 282, 294, 300, 332, 569Index 631 direction, 132, 137, 138, 140, 148, 151, 152, 186, 234 plane, 102, 105–109, 115, 121, 122, 124, 126–128, 131, 132, 137–139, 141, 142, 148, 151, 155, 159, 160, 186, 188, 191, 197, 206, 221, 225, 230, 247, 252, 288–291, 333, 374, 460, 461, 500 system, 132, 138, 151, 155, 159, 185, 186, 192, 196, 197, 205, 206, 218, 221, 222, 230, 231, 234, 240, 246, 266, 533, 539, 550, 602 stacking fault, 89, 92 strain energy, 73, 110–112, 125, 283, 540 strain rod dislocation, 140 stress field, 113, 118–122, 125, 126, 171–173, 178, 179, 228, 238, 245, 247, 254, 332, 334, 461, 463 stress field of screw dislocation, 118, 119 stress to unpin the dislocation, 175–179 structure, 55–58, 94, 95, 140, 162, 193, 214, 216, 218, 235, 260, 265, 292, 366, 367, 370, 371, 373, 376, 400–410 theoretical strength, 86–88, 105, 148, 520, 527 Thompson tetrahedron, 139–141 transmission electron microscopy (TEM), 55, 86, 92–97, 231, 247 E Elastic binding energy, 174 Elastic limit, 13, 28, 65, 391, 392, 500 Elastic strain energy, 25–27, 69, 110 Elastic deformation, 3–12, 70, 147, 581 Elongation, 3, 6, 18, 19, 62, 110, 162, 182, 206, 238, 260, 261, 301, 362, 450, 490–492, 519, 525, 528, 569, 570, 572–574, 577, 578, 580, 582, 621 F Fatigue Bauschinger effect, 192, 371, 372 beach marks, 398–400, 507 coaxing, 391–393 cumulative damage, 392–395 decarburizing, 424–425 design for fatigue, 441–444 dislocation structure, 366, 367, 370, 371, 373, 376, 400–411 endurance limit ferrous metals, 340, 342, 345–346 non-ferrous metals, 340, 346–347 environment, 398, 400, 424, 434–436, 442, 443 extrusions, 376, 398, 405, 406, 408–411, 416, 423 fatigue life, 342, 343, 347–350, 352–360, 382, 385, 387, 391, 392, 395, 408, 409, 411, 417–420, 422, 424, 426, 428, 430, 431, 434, 436, 442, 443, 507, 511, 512, 514, 515, 597, 602, 604 fracture by fatigue, 415–416 grain size, 425–430, 606 hysteresis, 349, 371–381 intrusions, 398, 405, 406, 408, 411, 415 mean stress, 341, 342, 349, 351, 352, 370, 381–385, 387, 418 notch effect, 411–415 overloading, 387–391 residual stresses carburizing, 422–423 case hardening, 422–424 nitriding, 423–424, 440 S-N relation, 346, 412 shot peening, 417, 419–423, 425, 437, 440 specimen size, 346, 398, 433–434 stress cycles high-cycle, 342, 345, 353, 355, 358, 360, 383, 392, 423, 424 low-cycle, 347–352, 358, 360, 364, 419, 437 very high cycle, 353–354 striations, 398–401, 507, 509 surface effects, 416–417 temperature, 430–433 tensile residual stresses, 417, 418, 424–425 thermal fatigue, 339, 436–441 underloading, 385–387 variable-amplitude loading, 395–398 work hardening, 360–371, 392 Fracture blunting, 400, 481, 482, 507–510 brittle, 29, 30, 36, 67, 333, 450, 452–463, 482, 484, 486, 488, 489, 504 dislocation theory, 86, 460–463 ductile fracture, 29, 67, 449–451, 466, 488–502, 618 effects of cavities, 493–496 effects of inclusions, 496–502632 Index Fracture (cont.) embrittlement aqueous-environment embrittlement (AEE), 469–472 hydrogen embrittlement (HE), 463–469 liquid metal, 463–464, 466 phosphorus-induced embrittlement, 473–474 temper embrittlement (TE), 463, 472–476 temper embrittlement by antimony, 472 fatigue fracture, 339, 400, 416, 420, 426, 507–516, 622 fracture toughness, 65, 477–488, 501, 508 Griffith’s theory, 454–458, 480 neck formation, 489–502 Orowan’s fracture theory, 278, 457–460 theories of brittle fracture, 453–463 torsion, 55, 63–64, 477 transition temperature, 65, 67, 68, 473–475, 482, 502–507 G Grain boundaries, grain size, 186–188, 191–193, 195, 239–246, 275, 285, 297–299, 306, 334, 417, 426–430, 566–569, 577, 583, 584, 591, 592, 594, 606, 612, 616 H Hall–Petch relation, 240, 242, 244, 298, 429, 562–567 Hardness test ball indentation, 42–43 Brinnell hardness, 37–40, 47 cone indenter, 43–47 Knoop hardness, 45–46 Meyer hardness, 40–42 microhardness, 45–46, 50 pyramid indenters, 44 Rockwell hardness, 46–49 Rockwell to Brinnel conversion, 49 spherical indenter, 46–49 vickers, 39, 43–46, 512, 513 Hooke’s law, 4, 10, 13, 33, 73, 87, 111, 114, 118 Hydrostatic pressure, 11, 12, 34–36, 172 I Impact test Charpy, 64–69, 479, 480, 482, 483, 505, 506 energy absorbed transition temperature, 66, 67 fracture transition temperature, 68 instrumented test, 483 Izod, 64, 68 L L¨ uders bands, 163, 165–168, 170, 178, 549, 550 M Microstructure, 45, 46, 50, 196, 214–217, 278, 280, 281, 294, 295, 298, 370, 398, 427, 431, 461, 466, 469, 474, 475, 477, 486, 489, 496, 504, 507, 558, 570, 585, 587, 594, 595, 597, 603, 607, 619, 622 N Necking, 3, 15, 18, 20–23, 32, 33, 36, 262, 270, 322, 450, 488–491, 493, 524, 546, 547, 579, 581, 607 P Peierls-Nabarro force, 218 Plastic deformation, 13–16, 19, 23, 29, 30, 36, 42, 63, 67, 86, 103–105, 110, 147–193, 196, 197, 228, 239, 259, 284, 316, 339, 370, 391, 392, 417, 449, 452, 457, 459, 460, 463, 466, 484, 490, 492, 494, 495, 500, 509, 520, 522, 528, 531, 543, 545, 546, 558, 566, 578–581, 592–594, 597, 605, 610, 612, 613, 616–621 Poisson’s ratio, 9, 24, 115, 293, 439, 538, 539 Polygonization, 184–185 Portevin-Le Chatelier effect, 163 Preferred orientation (texture), 188–190 Proportional limit, 13–14, 163 R Reduction in area, 270 Residual stresses, 387, 417–425, 437, 438, 443, 469, 472, 512Index 633 Resilience, 26–28 River pattern, 484, 486, 487, 505, 618–620 S Schmid’s law, 150, 157, 158, 234 Second phase hardening Orowan loop formation, 247–249 stage I crystal structure, 197–198 orientation, 198–202 purity, 203–205 specimen size, 202–203 temperature, 202 stage II crystal structure, 206–208 orientation, 208–209 purity, 210 specimen size, 210 temperature, 209–210 stage III (dynamic recovery) stacking fault, 212 temperature, 212–214 The Mott-Nabarro concept, 253–255 Serrated curves, 160, 168, 169 Sharp yield, 164–167, 178, 549 Slip in BCC structures, 152–153 in FCC structures, 151–152 in HCP structures, 153–155 in polycrystalline materials, 155–157 Small size deformation creep, 520, 583, 590, 592, 595 dislocation models for the size effects, 192, 521 epilogue, 621–622 fatigue, 520, 595, 606 fracture, 524, 547, 613, 620 size effect, 520, 523, 524 static properties free-standing films, 542–547 Hall–Petch relation, 562–567 polycrystalline materials, 416, 528–531 single crystals, 521–528 superplasticity, 567–582 thin films, 531–542 twinning, 551–562 whiskers, 547–551 Solid solution strengthening interstitial atoms, 237 substitution atoms, 237–239 Stain aging, 166–169 Strain shear, 23–25 strain energy, 25–27, 69, 73, 110–112, 125, 283, 454, 456, 457, 480, 482, 540 true, 9, 15–18, 20, 42 Strain (work) hardening, 17, 18, 20, 40, 42, 61, 86, 103, 130, 142, 163, 191, 195–214, 216–236, 240, 241, 246, 260, 289, 313, 315, 316, 318, 348, 349, 371, 387, 489, 523, 526, 534, 543, 549, 550, 574, 582, 5224 Strain hardening in polycrystalline materials Strength coefficient, 17, 187, 348, 349, 605 Strengthening mechanisms by obstacles, 249 crystal structure, 197–198 cutting through a second phase, 252–253 effect of temperature, 202 grain boundaries and grain size, 239–246 interstitial atoms, 237 Mott-Nabarro concept, 253–255 orientation, 198–202 Orowan loop formation, 247–249 purity of the specimen, 203–205 second-phase hardening, 246–255 solid solution strengthening, 236–239 specimen size, 202–203 stacking fault, 212 strain hardening, 196–214 strength of obstacles, 249–252 Stress break-away, 249–252 compression, 30–36, 160 critical resolved shear stress, 147–151, 293 fracture, 28–30, 234, 349, 358, 371, 382, 449, 453, 458, 466, 616, 501, 546 resolved shear stress, 148–150, 154, 158, 182, 183, 186, 199, 206, 207, 240, 549, 551 shear, 2, 9, 23–25, 35, 50, 52–56, 59–63, 86–88, 98, 102, 104–107, 111–113, 118, 120–122, 127, 132, 141, 142, 178, 182, 197, 201, 202, 205, 206, 211, 212, 219, 236, 238, 254, 286, 297–302, 489, 500, 509, 510, 526, 533, 550, 552 stress to unpin dislocation, 175–179 tensile, 29, 36, 50, 123–125, 160, 184, 234, 238, 284, 296, 302, 324, 339, 358, 385, 411–413, 417, 425, 457, 469, 489, 507, 511, 550, 559, 562, 606, 608 true, 15–18, 20, 22, 33, 42, 369, 522, 572634 Index Stress (cont.) yield, 13–15, 28, 29, 36, 119, 148, 150, 157, 168, 176–178, 180–182, 184, 187, 188, 190–192, 203, 234, 235, 238, 240, 242, 255, 284, 288, 316, 339, 362, 371, 382, 385, 392, 402, 464, 477, 501, 527, 528, 540, 542–544, 547, 549–552, 563, 566, 582 T Tension test elastic limit, 13, 28, 392 instability in tension, 20–23 proportional limit, 13–14, 163 stress–strain relation, 16–18, 60 true stress–strain relation, 16–18 Theories of strain hardening stage I Mott’s model, 221–222 Seeger’s theory, 222–223 Taylor’s approach to strain hardening, 219–221 stage II another approach of Seeger to the pile-up model, 226–228 forest model of Basinski, 228–229 Friedel’s pile up model, 225–226 model of Hirsch, 231–233 Mottt’s model of jogs, 227–231 pile-up model of Seeger, 224–225 stage III, 233–234 Thermal fatigue, 339, 436–441 Torsion test axial change, 4, 62–63 elastic region, 51–55 fracture in torsion, 63–64 plastic region, 55–62 Toughness, 28–29, 64, 65, 68, 182, 473, 474, 477–488, 501, 504, 508, 531, 622 Tropometer, 51 Twinning, 147, 148, 155–163, 186, 197, 200, 208, 240, 524, 551–562, 569, 577, 578, 582, 595, 606, 613, 616–618 Y Yield phenomena Cottrell-Bilby theory, 169–178 L¨ uders bands, 165–166 Portevin Le Chatelier effect, 168–169 sharp yield, 164–165 Young’s (or elastic) modulus
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mechanical Properties of Materials رابط مباشر لتنزيل كتاب Mechanical Properties of Materials
|
|