كتاب Mechanical Properties of Materials
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Mechanical Properties of Materials

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Mechanical Properties of Materials  Empty
مُساهمةموضوع: كتاب Mechanical Properties of Materials    كتاب Mechanical Properties of Materials  Emptyالثلاثاء 04 أكتوبر 2022, 4:53 am

أخواني في الله
أحضرت لكم كتاب
Mechanical Properties of Materials
Joshua Pelleg

كتاب Mechanical Properties of Materials  M_p_o_14
و المحتوى كما يلي :


Contents
1 Mechanical Testing of Materials . 1
1.1 Introduction 1
1.2 The Tension Test . 2
1.2.1 Elastic Deformation and the Relations Between
Stress and Strain . 3
1.2.2 The Elastic and Proportional Limits 13
1.2.3 Plastic Deformation 14
1.2.4 The True Stress/Strain Relation . 16
1.2.5 Elongation 18
1.2.6 The Reduction of Area . 19
1.2.7 Necking . 20
1.2.8 Instability in Tension . 20
1.2.9 The Shear Stress and Shear Strain 23
1.2.10 The Elastic Strain Energy 25
1.2.11 Resilience . 27
1.2.12 Toughness 28
1.2.13 Fracture Stress 29
1.3 Compression Stress 30
1.3.1 Introduction 30
1.3.2 The Compression of Brittle Materials . 30
1.3.3 The Compression of Ductile Materials . 31
1.3.4 The Effect of Hydrostatic Pressure on Compression . 34
1.4 The Hardness Test . 36
1.4.1 Indentation by Spherical (Ball) Indenters . 37
1.4.2 Indentation by Pyramid and Cone Indenters 43
1.4.3 Indentation by Cone (or Spherical) Indenters 46
1.4.4 Comments on Hardness Tests . 50
1.5 The Torsion Test (Shear) 50
1.5.1 Torsion in the Elastic Region 51
1.5.2 Torsion in the Plastic Region 55
ixx Contents
1.5.3 Axial Change in Torsion . 62
1.5.4 Fracture by Torsion Test . 63
1.6 The Impact Tests . 64
1.7 Anelasticity 69
1.7.1 Introduction 69
1.7.2 The Elastic After Effect 70
1.7.3 The Thermoelastic Effect 71
1.7.4 Energy Losses/Hysteresis Loop . 73
1.7.5 Internal Friction 73
Appendix I . 78
Appendix II 80
References . 84
2 Introduction to Dislocations 85
2.1 Introduction 85
2.2 The Theoretical Strength of Crystals . 86
2.3 Seeing (Dislocations) Is Believing 88
2.3.1 Etch Pits 89
2.3.2 Transmission Electron Microscopy (TEM) . 92
2.3.3 Field Ion Microscopy (FIM) . 95
2.4 The Geometrical Characterization of Dislocations . 97
2.5 The Formation of Dislocations 101
2.6 The Motion of Dislocations . 103
2.6.1 Conservative Motion . 105
2.6.2 Non-conservative Motion (Climb) 108
2.7 The Energy of Dislocations . 110
2.7.1 Screw Dislocation 112
2.7.2 Edge Dislocation . 114
2.8 Line Tension . 117
2.9 The Stress Field of a Dislocation . 118
2.9.1 Screw Dislocations . 118
2.9.2 Edge Dislocations 120
2.10 The Forces Acting on Dislocations . 122
2.10.1 The Glide Forces . 122
2.10.2 Climb . 124
2.11 The Forces Between Dislocations 125
2.11.1 Screw Dislocations . 125
2.11.2 Edge Dislocations 126
2.12 The Intersection of Dislocations 127
2.13 Dislocation Multiplication 130
2.14 Partial Dislocations 132
2.14.1 Shockley Partial Dislocations . 133
2.14.2 Frank Partial Dislocations . 136
2.14.3 The Cross Slip of Partial Dislocations 138
2.14.4 The Thompson Tetrahedron . 139
2.14.5 Lomer-Cottrell Locks 140Contents xi
2.15 Dislocation Pile-Ups . 141
2.16 Low (Small)-Angle Grain Boundaries 143
References . 145
3 Plastic Deformation 147
3.1 Introduction 147
3.2 Critical Resolved Shear Stress (CRSS) . 147
3.3 Slip . 151
3.3.1 FCC Structures . 151
3.3.2 BCC Structures . 152
3.3.3 HCP Structures . 153
3.4 The Slip in Polycrystalline Materials . 155
3.5 Twinning . 157
3.6 Yield Phenomena 163
3.6.1 Introduction 163
3.6.2 Sharp Yield . 164
3.6.3 L¨ uders Bands . 165
3.6.4 Stain Aging . 166
3.6.5 The Cottrell-Bilby Theory . 169
3.7 The Bauschinger Effect (BE) . 179
3.8 The Effect of Impurity (Solute), Temperature and Orientation 180
3.9 Polygonization . 184
3.10 Deformation in Polycrystalline Materials 186
3.10.1 Preferred Orientation (Texture) 188
3.10.2 The Bauschinger Effect (BE) 190
3.11 Grain Boundaries 192
References . 193
4 Strengthening Mechanisms . 195
4.1 Introduction 195
4.2 Strain Hardening . 196
4.2.1 Stage I 197
4.2.2 Stage II . 205
4.2.3 Stage III (Dynamic Recovery) . 210
4.3 Microstructure . 214
4.4 Theories of Strain Hardening . 217
4.4.1 Stage I 219
4.4.2 Stage II . 223
4.4.3 Stage III 233
4.5 Strain Hardening in Polycrystalline Materials . 234
4.6 Solid Solution Strengthening 236
4.6.1 Introduction 236
4.6.2 Strengthening by Interstitial Atoms . 237
4.6.3 Strengthening by Substitution Atoms . 237
4.7 Grain Boundaries and Grain Size . 239xii Contents
4.8 Second-Phase Hardening (Precipitates and/or Other Particles) . 246
4.8.1 Introduction 246
4.8.2 Orowan Loop Formation 247
4.8.3 The Strength of Obstacles and Break-Away Stress . 249
4.8.4 Cutting Through the Second Phase . 252
4.8.5 The Mott-Nabarro Concept 253
4.8.6 Summary of Second-Phase Strengthening 255
References . 256
5 Time Dependent Deformation – Creep 259
5.1 Introduction 259
5.2 Creep in Single Crystals . 260
5.3 Creep in Polycrystalline Materials 272
5.4 Mechanisms of Creep . 282
5.4.1 Nabarro-Herring Creep 284
5.4.2 Dislocation Creep and Climb 288
5.4.3 Climb-Controlled Creep . 288
5.4.4 Glide via Cross-Slip . 291
5.4.5 Coble Creep 296
5.5 Grain-Boundary Sliding . 298
5.6 Creep Rupture 307
5.7 Recovery (Relaxation) . 314
5.8 The Prediction of Life-Time (Parametric Method) . 318
5.8.1 The Larson-Miller Approach 318
5.8.2 The Manson-Haferd Approach 321
5.8.3 The Orr-Sherby-Dorn (OSD) Approach 325
5.8.4 The Monkman-Grant Approach . 329
5.9 Concepts of Designing (Selecting) Creep-Resistant Materials 332
References . 335
6 Cyclic Stress – Fatigue . 339
6.1 Introduction 339
6.2 The Endurance Limit; S-N Curves 340
6.2.1 The Endurance Limit in Ferrous Metals 345
6.2.2 The Endurance Limit in Non-ferrous Metals . 346
6.3 The Stress Cycles 347
6.3.1 Low-Cycle Fatigue Tests 348
6.3.2 High-Cycle Fatigue Tests 353
6.3.3 Very High Cycle Tests . 353
6.4 Fatigue Life 354
6.4.1 The Stress-Based Approach . 354
6.4.2 Strain-Based Life-Times . 355
6.5 Work Hardening (Softening) 360
6.6 Hysteresis 371
6.7 The Mean Stress . 381Contents xiii
6.8 Underloading (UL), Overloading (OL), Coaxing
and Cumulative Damage 385
6.8.1 Underloading (UL) . 385
6.8.2 Overloading (OL) 387
6.8.3 Coaxing . 391
6.8.4 Cumulative Damage . 392
6.8.5 Variable-Amplitude Loading (Intermittent Loading) . 395
6.9 Structural Observations in Fatigued Specimens 398
6.9.1 Progression Markings (Beach Marks) and Striations 398
6.9.2 The Dislocation Structure in Fatigue 400
6.10 The Notch Effect . 411
6.11 Failure Resulting from Cyclic Deformation (Fracture by Fatigue) 415
6.12 The Effects of Some Materials and Process Variables . 416
6.12.1 Surface Effects on Fatigue . 416
6.12.2 The Residual Stresses 417
6.12.3 Introduction to Residual Stresses 418
6.13 Miscellaneous Variables . 425
6.13.1 Grain Size 426
6.13.2 The Effect of Temperature . 430
6.13.3 Specimen Size 432
6.13.4 The Environment . 434
6.14 Thermal Fatigue . 436
6.15 Design for Fatigue . 442
References . 444
7 Fracture . 449
7.1 Introduction 449
7.2 Fracture Types . 451
7.3 Brittle Fracture . 454
7.4 Theories of Brittle Fracture . 455
7.4.1 Griffith’s Theory on Fracture 456
7.4.2 Orowan’s Fracture Theory . 459
7.4.3 Brittle Fracture in Crystalline Materials 461
7.4.4 The Dislocation Theory of Brittle Fracture . 462
7.5 Factors Causing Embrittlement . 465
7.5.1 Liquid Metal Embrittlement (LME) 465
7.5.2 Hydrogen Embrittlement (HE) 466
7.5.3 Aqueous-Environment Embrittlement (AEE)
or Stress-Corrosion Cracking 471
7.5.4 Temper Embrittlement (TE) . 474
7.6 Fracture Toughness 479
7.7 Ductile Fracture 490
7.7.1 Introduction 490
7.7.2 The Process of Neck Formation . 491xiv Contents
7.8 Ductile-to-Brittle Transition (Transition Temperature) 504
7.8.1 Introduction 504
7.8.2 The Features 505
7.9 Fatigue Fracture 509
7.9.1 Crack-Tip Blunting 509
7.9.2 The Effect of Inclusion 512
References . 518
8 Mechanical Behavior in the Micron and Submicron/Nano Range . 521
8.1 Introduction 521
8.2 Mechanical Behavior in the Small-Size Range 521
8.2.1 An Explanation of the Size Effect . 522
8.3 The Static Properties . 523
8.3.1 Single Crystals . 523
8.3.2 Polycrystalline Materials 530
8.3.3 Thin Films 533
8.3.4 Free-Standing Films . 544
8.3.5 Whiskers 549
8.3.6 Twinning . 553
8.3.7 The Hall-Petch Relation (H-P) in Materials of
Small Dimensions 564
8.3.8 Superplasticity . 569
8.4 Time-Dependent Deformation (Creep) . 584
8.5 Fatigue Behavior . 597
8.5.1 Introduction 597
8.5.2 Fatigue in Micron-/Submicron-Sized Materials 597
8.5.3 The Fatigue of Nanocrystalline (NC) Materials 608
8.6 Fracture . 614
8.6.1 Introduction 614
8.6.2 The Characteristics . 615
8.7 Epilogue 623
Reference 624
Index . 629Chapter 1
Index
A
Activation energy, 125, 139, 268, 274, 275,
278, 283, 290, 292, 293, 300, 310,
313, 319, 325, 326, 329, 568, 569,
590
Anelasticity
adiabatic loading, 72, 74
damping, 71–74, 76–78, 82–84
elastic after effect, 70–71
energy losses, 73
hysteresis loop, 71–75
internal friction, 73–78
isothermal loading, 71
modulus effect, 70
thermoelastic effect, 71–73
B
Bauschinger effect, 179–180, 190–192, 371,
372
Bauschinger effect in polycrystalline material,
179, 190
Bulk (or volumetric) modulus, 11, 12, 17
Burgers circuit, 98–101
Burgers vector, 98–101, 108, 115, 116, 119,
121, 122, 124, 125, 127–130,
133–135, 137, 138, 140–143, 153,
157, 162, 176, 219, 232, 241, 265,
291, 293, 294, 460–462, 520, 521,
526, 539, 555
C
Climb, 86, 89, 108–110, 122–125, 127, 129,
130, 136, 138, 142, 185, 212, 265,
273–275, 282–284, 288–295, 299,
315–317, 333, 334
Compression
brittle materials, 30, 31, 35
ductile materials, 31–34, 510
hydrostatic pressure, 34–36
Considere’s construction, 22 ´
Cottrell-Bilby theory, 169–179
Creep (time dependent deformation)
climb controlled creep, 288–292
coble creep, 284, 296–298, 563, 583, 584,
590–594
concepts of designing (creep resistant
materials), 260, 333, 335
Glide via cross slip, 284, 288, 291–296
Grain boundary sliding, 239, 259, 260, 263,
273, 275, 282, 283, 296, 298–307
in polycrystalline material, 147, 239, 260,
264, 272–282, 298, 300, 315, 332,
334, 592, 593
in single crystals, 147, 182, 239, 259–272,
275, 278, 292, 293, 334, 521–528
life time
Mandon-Haferd, 318
Monkman-Grant, 318, 329, 330, 332
Sherby-Dorn, 318, 325
mechanism of creep, 283, 592
Nabarro-Herring creep, 273, 283–288
recovery (relaxation), 260, 262, 265–267,
281, 283, 289, 291, 299, 310,
314–318
rupture, 260, 299, 307–314, 319–322, 327,
328, 331
Critical resolved shear stress (CRSS), 147–151,
155, 157, 158, 181, 183, 191, 197,
204, 210, 213, 218, 234, 240, 245,
255, 293, 524
Cutting through the second phase, 252–253
D
Deformation
effects of solute, temperature and
orientation, 180
elastic, 3–15, 17, 24, 25, 27–30, 35, 42, 51,
70, 77, 86, 102, 147, 163, 164, 167,
191, 196, 204, 208, 262, 288, 348,
371, 391, 392, 452, 460, 461, 500,
531, 533, 534, 538, 543, 546, 581,
612, 622
plastic, 13–16, 19, 23, 29, 30, 36, 42, 63,
67, 86, 103–105, 110, 147–193,
196, 197, 228, 239, 259, 284, 316,
339, 370, 391, 392, 417, 449, 452,
457, 459, 460, 463, 466, 484, 490,
492, 494, 495, 500, 509, 520, 522,
528, 531, 543, 545, 546, 558, 566,
578–581, 592–594, 597, 605, 610,
612, 613, 616–621
polycrystalline materials, 103, 147, 150,
155–157, 184, 186–192, 202, 209,
211, 234–236, 239, 240, 244–246,
260, 264, 298, 300, 315, 332, 416,
528–531, 582, 592, 593, 613
twinning, 159, 160, 524, 578, 618
Dislocations
back stress, 141, 142, 192, 223, 241, 521,
540
burgers circuit, 98–101
burgers vector, 98–101, 108, 115, 116, 119,
121, 122, 124, 128, 133, 134, 137,
138, 140–143, 162, 176, 219, 232,
241, 265, 291, 293, 294, 460–463,
521, 539, 555
cell structure, 55, 93, 215, 216, 266, 373,
374, 379, 381, 400–402, 405, 406,
494, 496
climb, 86, 108, 109, 124, 273–275, 289,
290, 299, 315
conservative motion, 105–108
core energy, 111, 114, 144, 145, 192
creep, 278, 284, 288, 586, 589, 591
cross slip of partials, 138–139
easy glide, 130, 196, 197, 210, 214–216,
550
edge dislocation, 97–99, 101, 102,
105–108, 112, 114–116, 120–122,
124, 126–128, 130, 138, 142–144,
171–173, 178, 179, 185, 192, 212,
219, 221, 231, 237, 241, 289, 291,
293, 317, 460–462, 507
energy of dislocation, 110–112, 115
etch pits, 86, 89–92, 165, 197, 214
field ion microscopy (FIM), 86, 95–96
forces between dislocations, 125–127
forces on dislocations, 141, 254
formation, 92, 103, 318, 566
Frank partial dislocations, 136–138, 140
Frank-Read source, 131, 132, 141, 227
general (or mixed) dislocation, 97, 115,
116, 121, 122, 205
geometrical characterization, 97–101
glide, 89, 104, 105, 108–110, 122–124,
127, 128, 130, 131, 136–138, 140,
141, 176, 177, 186, 196, 197, 206,
210, 212–216, 218, 223, 225, 227,
229, 231, 233, 235, 237–240, 252,
254, 255, 261, 265, 273, 282, 284,
288, 289, 291–296, 315, 317, 333,
371, 379, 462, 520, 521, 524, 534,
555, 556, 581
glissile, 110, 136, 229, 520
intersection of dislocations, 127–130
Jog, 108–110, 124, 125, 127–130, 132,
193, 219, 223, 229–231, 233, 235,
315, 402
kink, 108, 127–130
line tension, 117–118, 122, 131, 132, 248,
249
Lomer-Cottrell locks, 140–141, 223,
225
low (small)angle grain boundaries, 89, 92,
143–145, 159, 192, 193, 315
motion, 73, 86, 105, 106, 110, 151, 165,
186, 187, 192, 196, 206, 216, 217,
219, 237–241, 246, 248, 254, 255,
260, 264, 265, 281, 288, 289, 300,
332, 334, 379, 381, 452, 534, 539,
558, 582, 616, 618
multiplication, 118, 130–132, 276, 534,
612, 620
non-conservative motion, 108–110, 229
partial dislocations, 133, 135, 141, 566,
580, 581
pile-ups, 86, 92, 141–142, 155, 179, 186,
221, 227, 231, 240, 241, 289, 500,
507, 521, 540
screw dislocations, 97, 98, 101, 102, 105,
108, 109, 112–116, 118–120, 122,
125–126, 129, 130, 138, 139, 144,
178, 179, 192, 212, 215, 216, 229,
233, 237, 238, 291–293, 315, 317,
461, 548
seeing dislocations, 88–97
sessile, 110, 137, 141, 221, 229
Shockley partial dislocations, 133–136, 140
slip, 160, 191, 193, 205, 210, 240, 245,
282, 294, 300, 332, 569Index 631
direction, 132, 137, 138, 140, 148, 151,
152, 186, 234
plane, 102, 105–109, 115, 121, 122,
124, 126–128, 131, 132, 137–139,
141, 142, 148, 151, 155, 159, 160,
186, 188, 191, 197, 206, 221, 225,
230, 247, 252, 288–291, 333, 374,
460, 461, 500
system, 132, 138, 151, 155, 159, 185,
186, 192, 196, 197, 205, 206, 218,
221, 222, 230, 231, 234, 240, 246,
266, 533, 539, 550, 602
stacking fault, 89, 92
strain energy, 73, 110–112, 125, 283, 540
strain rod dislocation, 140
stress field, 113, 118–122, 125, 126,
171–173, 178, 179, 228, 238, 245,
247, 254, 332, 334, 461, 463
stress field of screw dislocation, 118, 119
stress to unpin the dislocation, 175–179
structure, 55–58, 94, 95, 140, 162, 193,
214, 216, 218, 235, 260, 265,
292, 366, 367, 370, 371, 373, 376,
400–410
theoretical strength, 86–88, 105, 148, 520,
527
Thompson tetrahedron, 139–141
transmission electron microscopy (TEM),
55, 86, 92–97, 231, 247
E
Elastic binding energy, 174
Elastic limit, 13, 28, 65, 391, 392, 500
Elastic strain energy, 25–27, 69, 110
Elastic deformation, 3–12, 70, 147, 581
Elongation, 3, 6, 18, 19, 62, 110, 162, 182,
206, 238, 260, 261, 301, 362, 450,
490–492, 519, 525, 528, 569, 570,
572–574, 577, 578, 580, 582, 621
F
Fatigue
Bauschinger effect, 192, 371, 372
beach marks, 398–400, 507
coaxing, 391–393
cumulative damage, 392–395
decarburizing, 424–425
design for fatigue, 441–444
dislocation structure, 366, 367, 370, 371,
373, 376, 400–411
endurance limit
ferrous metals, 340, 342, 345–346
non-ferrous metals, 340, 346–347
environment, 398, 400, 424, 434–436, 442,
443
extrusions, 376, 398, 405, 406, 408–411,
416, 423
fatigue life, 342, 343, 347–350, 352–360,
382, 385, 387, 391, 392, 395, 408,
409, 411, 417–420, 422, 424, 426,
428, 430, 431, 434, 436, 442, 443,
507, 511, 512, 514, 515, 597, 602,
604
fracture by fatigue, 415–416
grain size, 425–430, 606
hysteresis, 349, 371–381
intrusions, 398, 405, 406, 408, 411, 415
mean stress, 341, 342, 349, 351, 352, 370,
381–385, 387, 418
notch effect, 411–415
overloading, 387–391
residual stresses
carburizing, 422–423
case hardening, 422–424
nitriding, 423–424, 440
S-N relation, 346, 412
shot peening, 417, 419–423, 425, 437,
440
specimen size, 346, 398, 433–434
stress cycles
high-cycle, 342, 345, 353, 355, 358,
360, 383, 392, 423, 424
low-cycle, 347–352, 358, 360, 364, 419,
437
very high cycle, 353–354
striations, 398–401, 507, 509
surface effects, 416–417
temperature, 430–433
tensile residual stresses, 417, 418, 424–425
thermal fatigue, 339, 436–441
underloading, 385–387
variable-amplitude loading, 395–398
work hardening, 360–371, 392
Fracture
blunting, 400, 481, 482, 507–510
brittle, 29, 30, 36, 67, 333, 450, 452–463,
482, 484, 486, 488, 489, 504
dislocation theory, 86, 460–463
ductile fracture, 29, 67, 449–451, 466,
488–502, 618
effects of cavities, 493–496
effects of inclusions, 496–502632 Index
Fracture (cont.)
embrittlement
aqueous-environment embrittlement
(AEE), 469–472
hydrogen embrittlement (HE),
463–469
liquid metal, 463–464, 466
phosphorus-induced embrittlement,
473–474
temper embrittlement (TE), 463,
472–476
temper embrittlement by antimony,
472
fatigue fracture, 339, 400, 416, 420, 426,
507–516, 622
fracture toughness, 65, 477–488, 501, 508
Griffith’s theory, 454–458, 480
neck formation, 489–502
Orowan’s fracture theory, 278, 457–460
theories of brittle fracture, 453–463
torsion, 55, 63–64, 477
transition temperature, 65, 67, 68, 473–475,
482, 502–507
G
Grain boundaries, grain size, 186–188,
191–193, 195, 239–246, 275, 285,
297–299, 306, 334, 417, 426–430,
566–569, 577, 583, 584, 591, 592,
594, 606, 612, 616
H
Hall–Petch relation, 240, 242, 244, 298, 429,
562–567
Hardness test
ball indentation, 42–43
Brinnell hardness, 37–40, 47
cone indenter, 43–47
Knoop hardness, 45–46
Meyer hardness, 40–42
microhardness, 45–46, 50
pyramid indenters, 44
Rockwell hardness, 46–49
Rockwell to Brinnel conversion, 49
spherical indenter, 46–49
vickers, 39, 43–46, 512, 513
Hooke’s law, 4, 10, 13, 33, 73, 87, 111, 114,
118
Hydrostatic pressure, 11, 12, 34–36,
172
I
Impact test
Charpy, 64–69, 479, 480, 482, 483, 505,
506
energy absorbed transition temperature, 66,
67
fracture transition temperature, 68
instrumented test, 483
Izod, 64, 68
L
L¨ uders bands, 163, 165–168, 170, 178, 549,
550
M
Microstructure, 45, 46, 50, 196, 214–217, 278,
280, 281, 294, 295, 298, 370, 398,
427, 431, 461, 466, 469, 474, 475,
477, 486, 489, 496, 504, 507, 558,
570, 585, 587, 594, 595, 597, 603,
607, 619, 622
N
Necking, 3, 15, 18, 20–23, 32, 33, 36, 262,
270, 322, 450, 488–491, 493, 524,
546, 547, 579, 581, 607
P
Peierls-Nabarro force, 218
Plastic deformation, 13–16, 19, 23, 29, 30,
36, 42, 63, 67, 86, 103–105, 110,
147–193, 196, 197, 228, 239, 259,
284, 316, 339, 370, 391, 392, 417,
449, 452, 457, 459, 460, 463, 466,
484, 490, 492, 494, 495, 500, 509,
520, 522, 528, 531, 543, 545, 546,
558, 566, 578–581, 592–594, 597,
605, 610, 612, 613, 616–621
Poisson’s ratio, 9, 24, 115, 293, 439, 538, 539
Polygonization, 184–185
Portevin-Le Chatelier effect, 163
Preferred orientation (texture), 188–190
Proportional limit, 13–14, 163
R
Reduction in area, 270
Residual stresses, 387, 417–425, 437, 438,
443, 469, 472, 512Index 633
Resilience, 26–28
River pattern, 484, 486, 487, 505,
618–620
S
Schmid’s law, 150, 157, 158, 234
Second phase hardening
Orowan loop formation, 247–249
stage I
crystal structure, 197–198
orientation, 198–202
purity, 203–205
specimen size, 202–203
temperature, 202
stage II
crystal structure, 206–208
orientation, 208–209
purity, 210
specimen size, 210
temperature, 209–210
stage III (dynamic recovery)
stacking fault, 212
temperature, 212–214
The Mott-Nabarro concept, 253–255
Serrated curves, 160, 168, 169
Sharp yield, 164–167, 178, 549
Slip
in BCC structures, 152–153
in FCC structures, 151–152
in HCP structures, 153–155
in polycrystalline materials, 155–157
Small size deformation
creep, 520, 583, 590, 592, 595
dislocation models for the size effects, 192,
521
epilogue, 621–622
fatigue, 520, 595, 606
fracture, 524, 547, 613, 620
size effect, 520, 523, 524
static properties
free-standing films, 542–547
Hall–Petch relation, 562–567
polycrystalline materials, 416, 528–531
single crystals, 521–528
superplasticity, 567–582
thin films, 531–542
twinning, 551–562
whiskers, 547–551
Solid solution strengthening
interstitial atoms, 237
substitution atoms, 237–239
Stain aging, 166–169
Strain
shear, 23–25
strain energy, 25–27, 69, 73, 110–112, 125,
283, 454, 456, 457, 480, 482, 540
true, 9, 15–18, 20, 42
Strain (work) hardening, 17, 18, 20, 40, 42,
61, 86, 103, 130, 142, 163, 191,
195–214, 216–236, 240, 241, 246,
260, 289, 313, 315, 316, 318, 348,
349, 371, 387, 489, 523, 526, 534,
543, 549, 550, 574, 582, 5224
Strain hardening in polycrystalline materials
Strength coefficient, 17, 187, 348, 349, 605
Strengthening mechanisms
by obstacles, 249
crystal structure, 197–198
cutting through a second phase, 252–253
effect of temperature, 202
grain boundaries and grain size, 239–246
interstitial atoms, 237
Mott-Nabarro concept, 253–255
orientation, 198–202
Orowan loop formation, 247–249
purity of the specimen, 203–205
second-phase hardening, 246–255
solid solution strengthening, 236–239
specimen size, 202–203
stacking fault, 212
strain hardening, 196–214
strength of obstacles, 249–252
Stress
break-away, 249–252
compression, 30–36, 160
critical resolved shear stress, 147–151, 293
fracture, 28–30, 234, 349, 358, 371, 382,
449, 453, 458, 466, 616, 501, 546
resolved shear stress, 148–150, 154, 158,
182, 183, 186, 199, 206, 207, 240,
549, 551
shear, 2, 9, 23–25, 35, 50, 52–56, 59–63,
86–88, 98, 102, 104–107, 111–113,
118, 120–122, 127, 132, 141, 142,
178, 182, 197, 201, 202, 205, 206,
211, 212, 219, 236, 238, 254, 286,
297–302, 489, 500, 509, 510, 526,
533, 550, 552
stress to unpin dislocation, 175–179
tensile, 29, 36, 50, 123–125, 160, 184, 234,
238, 284, 296, 302, 324, 339, 358,
385, 411–413, 417, 425, 457, 469,
489, 507, 511, 550, 559, 562, 606,
608
true, 15–18, 20, 22, 33, 42, 369, 522, 572634 Index
Stress (cont.)
yield, 13–15, 28, 29, 36, 119, 148, 150,
157, 168, 176–178, 180–182, 184,
187, 188, 190–192, 203, 234, 235,
238, 240, 242, 255, 284, 288,
316, 339, 362, 371, 382, 385, 392,
402, 464, 477, 501, 527, 528, 540,
542–544, 547, 549–552, 563, 566,
582
T
Tension test
elastic limit, 13, 28, 392
instability in tension, 20–23
proportional limit, 13–14, 163
stress–strain relation, 16–18, 60
true stress–strain relation, 16–18
Theories of strain hardening
stage I
Mott’s model, 221–222
Seeger’s theory, 222–223
Taylor’s approach to strain hardening,
219–221
stage II
another approach of Seeger to the
pile-up model, 226–228
forest model of Basinski, 228–229
Friedel’s pile up model, 225–226
model of Hirsch, 231–233
Mottt’s model of jogs, 227–231
pile-up model of Seeger, 224–225
stage III, 233–234
Thermal fatigue, 339, 436–441
Torsion test
axial change, 4, 62–63
elastic region, 51–55
fracture in torsion, 63–64
plastic region, 55–62
Toughness, 28–29, 64, 65, 68, 182, 473,
474, 477–488, 501, 504, 508, 531,
622
Tropometer, 51
Twinning, 147, 148, 155–163, 186, 197, 200,
208, 240, 524, 551–562, 569, 577,
578, 582, 595, 606, 613, 616–618
Y
Yield phenomena
Cottrell-Bilby theory, 169–178
L¨ uders bands, 165–166
Portevin Le Chatelier effect, 168–169
sharp yield, 164–165
Young’s (or elastic) modulus


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Mechanical Properties of Materials
رابط مباشر لتنزيل كتاب Mechanical Properties of Materials
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Mechanical Properties of Materials
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Mechanical Properties of Nanocrystalline Materials
» كتاب Mechanical Properties of Materials at Low Temperatures
» كتاب Mechanical Properties of Engineered Materials
» محاضرة بعنوان Mechanical Properties and Failure of Materials
» كتاب Plastics Materials - Properties and Applications

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: