Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed الإثنين 05 ديسمبر 2022, 3:47 pm | |
|
أخواني في الله أحضرت لكم كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed Ahmed E El-Sayed Zagazig University Zagazig, Egypt
و المحتوى كما يلي :
Contents List of Figures xvii Preface xxxi Acknowledgment . xxxiii Abstract . xxxv Part I Aero Engines and Gas Turbines 1 Chapter 1 History and Classifications of Aero Engines 3 1.1 Prejet Engines—History 4 1.1.1 Early Activities in Egypt and China 4 1.1.2 Leonardo da Vinci . 5 1.1.3 Branca’s Stamping Mill . 5 1.1.4 Newton’s Steam Wagon . 6 1.1.5 Barber’s Gas Turbine 6 1.1.6 Miscellaneous Aero-Vehicles’Activities in the Eighteenth and Nineteenth Centuries . 7 1.1.7 The Wright Brothers . 8 1.1.8 Significant Events up to the 1940s 10 1.1.8.1 Aero-Vehicle Activities 10 1.1.8.2 Reciprocating Engines . 12 1.2 Jet Engines 13 1.2.1 Jet Engine Inventors: Dr. Hans von Ohain and Sir Frank Whittle 13 1.2.1.1 Sir Frank Whittle (1907–1996) 13 1.2.1.2 Dr. Hans von Ohain (1911–1998) . 14 1.2.2 Turbojet Engines . 15 1.2.3 Turboprop and Turboshaft Engines . 18 1.2.4 Turbofan Engines 21 1.2.5 Propfan Engine 23 1.2.6 Pulsejet, Ramjet, and Scramjet Engines 24 1.2.6.1 Pulsejet Engine . 24 1.2.6.2 Ramjet and Scramjet Engines . 25 1.2.7 Industrial Gas Turbine Engines . 27 1.3 Classifications of Aerospace Engines 28 1.4 Classification of Jet Engines 29 1.4.1 Ramjet 29 1.4.2 Pulsejet . 30 1.4.3 Scramjet 31 1.4.4 Turboramjet 31 1.4.5 Turborocket 321.5 Classification of Gas Turbine Engines . 32 1.5.1 Turbojet Engines . 33 1.5.2 Turboprop 34 1.5.3 Turboshaft 35 1.5.4 Turbofan Engines 37 1.5.5 Propfan Engines . 41 1.5.6 Advanced Ducted Fan . 42 1.6 Industrial Gas Turbines . 43 1.7 Non–Air-Breathing Engines 44 1.8 Future of Aircraft and Power Plant Industries . 44 Closure 52 Problems 52 References 54 Chapter 2 Performance Parameters of Jet Engines . 57 2.1 Introduction . 57 2.2 Thrust Force . 57 2.3 Factors Affecting Thrust 67 2.3.1 Jet Nozzle 67 2.3.2 Air Speed . 68 2.3.3 Mass Air Flow . 68 2.3.4 Altitude . 68 2.3.5 Ram Effect . 69 2.4 Engine Performance Parameters . 70 2.4.1 Propulsive Efficiency 70 2.4.2 Thermal Efficiency 75 2.4.3 Propeller Efficiency 76 2.4.4 Overall Efficiency . 77 2.4.5 Takeoff Thrust . 80 2.4.6 Specific Fuel Consumption . 81 2.4.7 Aircraft Range . 82 2.4.8 Range Factor . 85 2.4.9 Endurance Factor 85 2.4.10 Specific Impulse . 87 Problems 91 References 94 Chapter 3 Pulsejet and Ramjet Engines . 97 3.1 Introduction . 97 3.2 Pulsejet Engines . 97 3.2.1 Introduction 97 3.2.2 Valved Pulsejet 98 3.2.3 Valveless Pulsejet 102 3.2.4 Pulse Detonation Engine 103 3.3 Ramjet Engines . 106 3.3.1 Ideal Ramjet . 107 3.3.2 Real Cycle . 110 3.4 Case Study . 129 3.5 Summary and Governing Equations for Shock Waves and Isentropic Flow . 141 3.5.1 Summary . 141 3.5.2 Normal Shock Wave Relations . 1413.5.3 Oblique Shock Wave Relations . 142 3.5.4 Rayleigh-Flow Equations . 142 3.5.5 Isentropic Relation 142 Problems 143 References 145 Chapter 4 Turbojet Engine . 147 4.1 Introduction . 147 4.2 Single Spool . 149 4.2.1 Examples of Engines 149 4.2.2 Thermodynamic Analysis . 150 4.2.3 Ideal Case 150 4.2.4 Actual Case 165 4.2.5 Comparison of Operative and Inoperative Afterburners . 175 4.3 Two-Spool Engine 178 4.3.1 Nonafterburning Engine . 179 4.3.1.1 Examples of Engines . 179 4.3.2.2 Thermodynamic Analysis 180 4.3.3 Afterburning Engine . 183 4.3.3.1 Examples of Two-Spool Afterburning Turbojet Engines . 183 4.3.2.2 Thermodynamic Analysis 184 4.4 Statistical Analysis 188 4.5 Thrust Augmentation . 189 4.5.1 Water Injection 189 4.5.2 Afterburning . 190 4.5.3 Pressure Loss in Afterburning Engine 191 4.6 Supersonic Turbojet . 195 4.7 Optimization of the Turbojet Cycle 198 Problems 209 References 213 Chapter 5 Turbofan Engines . 215 5.1 Introduction . 215 5.2 Forward Fan Unmixed Single-Spool Configuration . 216 5.3 Forward Fan Unmixed Two-Spool Engines . 221 5.3.1 The Fan and Low-Pressure Compressor on One Shaft . 221 5.3.2 Fan Driven by the LPT and the Compressor Driven by the HPT . 232 5.3.3 A Geared Fan Driven by the LPT and the Compressor Driven by the HPT . 233 5.4 Forward Fan Unmixed Three-Spool Engine . 235 5.5 Forward Fan Mixed-Flow Engine 242 5.5.1 Mixed-Flow Two-Spool Engine 242 5.6 Mixed Turbofan with Afterburner 255 5.6.1 Introduction 255 5.6.2 Ideal Cycle . 256 5.6.3 Real Cycle . 258 5.7 AFT Fan . 258 5.8 V/STOL 261 5.8.1 Swiveling Nozzles . 261 5.8.2 Switch-In Deflector System . 2665.9 Performance Analysis . 273 Summary 294 Problems 297 References 305 Chapter 6 Turboprop, Turboshaft, and Propfan Engines . 307 6.1 Introduction to Turboprop Engines 307 6.2 Classification of Turboprop Engines . 310 6.3 Thermodynamic Analysis of Turboprop Engines 312 6.3.1 Single-Spool Turboprop . 312 6.3.2 Two-Spool Turboprop . 316 6.4 Analogy with Turbofan Engines 319 6.5 Equivalent Engine Power . 320 6.5.1 Static Condition 320 6.5.2 Flight Operation . 320 6.6 Fuel Consumption 320 6.7 Turboprop Installation 321 6.8 Performance Analysis . 329 6.9 Comparison of Turbojet, Turbofan, and Turboprop Engines . 330 6.10 Turboshaft Engines . 333 6.11 Power Generated by Turboshaft Engines 334 6.11.1 Single-Spool Turboshaft 334 6.11.2 Double-Spool Turboshaft . 335 6.12 Examples for Turboshaft Engines 336 6.13 Propfan Engines . 337 Summary of Turboprop Relations . 340 Problems 340 References 344 Chapter 7 High-Speed Supersonic and Hypersonic Engines . 345 7.1 Introduction . 345 7.2 Supersonic Aircraft and Programs . 345 7.2.1 Anglo-French Activities . 346 7.2.2 Russian Activities 347 7.2.3 U.S. Activities 347 7.3 Future of Commercial Supersonic Technology 349 7.4 Technology Challenges of the Future Flight . 350 7.5 High-Speed Supersonic and Hypersonic Propulsion 350 7.5.1 Introduction 350 7.5.2 Hybrid Cycle Engine 351 7.6 Turboramjet Engine . 352 7.7 Wraparound Turboramjet . 352 7.7.1 Operation as a Turbojet Engine . 352 7.7.2 Operation as a Ramjet Engine 355 7.8 Over/Under Turboramjet . 356 7.8.1 Turbojet Mode . 358 7.8.2 Dual Mode . 358 7.8.3 Ramjet Mode 358 7.9 Turboramjet Performance 358 7.9.1 Turbojet Mode . 3587.9.2 Ramjet Mode 359 7.9.3 Dual Mode . 359 7.10 Case Study . 360 7.11 Examples for Turboramjet Engines 365 7.12 Hypersonic Flight . 367 7.12.1 History of Hypersonic Vehicles . 367 7.12.2 Hypersonic Commercial Transport . 369 7.12.3 Military Applications 370 7.13 Scramjet Engines 370 7.13.1 Introduction 370 7.13.2 Thermodynamics 372 7.14 Intake of a Scramjet Engine 372 7.15 Combustion Chamber . 373 7.16 Nozzle . 376 7.17 Performance Parameters 376 Problems 380 References 383 Chapter 8 Industrial Gas Turbines . 385 8.1 Introduction . 385 8.2 Categories of Gas Turbines . 386 8.3 Types of Industrial Gas Turbines . 387 8.4 Single-Shaft Engine . 388 8.4.1 Single Compressor and Turbine 389 8.4.1.1 Ideal Cycle 389 8.4.1.2 Real Cycle 392 8.4.2 Regeneration . 395 8.4.3 Reheat 398 8.4.4 Intercooling 399 8.4.5 Combined Intercooling, Regeneration, and Reheat 401 8.5 Double-Shaft Engine 406 8.5.1 Free Power Turbine 406 8.5.2 Two Discrete Shafts (Spools) . 408 8.6 Three Spool . 415 8.7 Combined Gas Turbine . 422 8.8 Marine Applications 423 8.8.1 Additional Components for Marine Applications 424 8.8.2 Examples for Marine Gas Turbines . 426 8.9 Offshore Gas Turbines 427 8.10 Micro Gas Turbines (µ-Gas Turbines) . 428 8.10.1 Microturbines versus Typical Gas Turbines 429 8.10.2 Design Challenges . 429 8.10.3 Applications 430 Problems 431 References 433 Part II Component Design 435 Chapter 9 Power Plant Installation and Intakes . 437 9.1 Introduction . 437 9.2 Power Plant Installation 4379.3 Subsonic Aircraft 437 9.3.1 Turbojet and Turbofan Engines . 438 9.3.1.1 Wing Installation . 438 9.3.1.2 Fuselage Installation . 442 9.3.1.3 Combined Wing and Tail Installation (Three Engines) . 443 9.3.1.4 Combined Fuselage and Tail Installation . 444 9.3.2 Turboprop Installation . 444 9.4 Supersonic Aircraft . 446 9.4.1 Civil Transports 446 9.4.2 Military Aircrafts 447 9.5 Air Intakes or Inlets . 448 9.6 Subsonic Intakes 449 9.6.1 Inlet Performance 451 9.6.2 Performance Parameters . 453 9.6.3 Turboprop Inlets . 457 9.7 Supersonic Intakes 457 9.7.1 Review of Gas Dynamic Relations for Normal and Oblique Shocks . 460 9.7.1.1 Normal Shock Waves 460 9.7.1.2 Oblique Shock Waves 461 9.7.2 External Compression Intake (Inlet) 462 9.7.3 Internal Compression Inlet (Intake) 467 9.7.4 Mixed Compression Intakes 468 9.8 Matching Between Intake and Engine . 470 9.9 Case Study . 472 Problems 475 References 479 Chapter 10 Combustion Systems 481 10.1 Introduction . 481 10.2 Subsonic Combustion Chambers . 482 10.2.1 Tubular (or Multiple) Combustion Chambers 482 10.2.2 Tubo-Annular Combustion Chambers 483 10.2.3 Annular Combustion Chambers . 484 10.3 Supersonic Combustion Chamber 485 10.4 Combustion Process 485 10.5 Chemistry of Combustion 487 10.6 Combustion Chamber Performance 490 10.6.1 Pressure Losses 490 10.6.2 Combustion Efficiency 491 10.6.3 Combustion Stability 491 10.6.4 Combustion Intensity 492 10.7 Cooling 493 10.8 Material 495 10.9 Aircraft Fuels 496 10.10 Emissions and Pollutants . 497 10.10.1 Pollutant Formation . 497 10.11 The Afterburner . 498 10.12 Supersonic Combustion System 499 Problems 501 References 503Chapter 11 Exhaust System . 505 11.1 Introduction . 505 11.2 Nozzle . 507 11.2.1 Governing Equations 508 11.2.1.1 Convergent–Divergent Nozzle 508 11.2.1.2 Convergent Nozzle . 511 11.2.2 Variable Geometry Nozzles . 512 11.2.3 Afterburning Nozzles 514 11.3 Calculation of the Two-Dimensional Supersonic Nozzle . 517 11.3.1 Convergent Nozzle 518 11.3.2 Divergent Nozzle 522 11.3.2.1 Analytical Determination of the Contour of a Nozzle 525 11.3.2.2 Design Procedure for a Minimum Length Divergent Nozzle 527 11.3.2.3 Procedure of Drawing the Expansion Waves Inside the Nozzle . 528 11.4 Thrust Reversal . 529 11.4.1 Classification of Thrust Reverser Systems . 531 11.4.2 Calculation of Ground Roll Distance . 536 11.5 Thrust Vectoring 537 11.5.1 Governing Equations 540 11.6 Noise . 541 11.6.1 Introduction 541 11.6.2 Acoustics Model Theory 543 11.6.3 Methods Used to Decrease the Jet Noise . 544 Problems 547 References 548 Chapter 12 Centrifugal Compressors . 551 12.1 Introduction . 551 12.2 Layout of Compressor 553 12.2.1 Impeller 553 12.2.2 Diffuser 554 12.2.3 Scroll or Manifold . 556 12.3 Classification of Centrifugal Compressors 556 12.4 Governing Equations . 559 12.4.1 The Continuity Equation 562 12.4.2 The Momentum Equation or Euler’s Equation for Turbomachinery 562 12.4.3 The Energy Equation or the First Law of Thermodynamics . 563 12.4.4 Slip Factor σ . 567 12.4.5 Prewhirl 570 12.4.6 Types of Impeller 581 12.5 Diffuser 589 12.5.1 Vaneless Diffuser 590 12.5.2 Vaned Diffuser . 592 12.6 Discharge Systems 598 12.7 Characteristic Performance of a Centrifugal Compressor 598 12.8 Erosion 602 12.8.1 Introduction 602 12.8.2 Theoretical Estimation of Erosion 605 Problems 609 References 616Chapter 13 Axial-Flow Compressors and Fans . 619 13.1 Introduction . 619 13.2 Comparison of Axial and Centrifugal Compressors . 621 13.2.1 Advantages of the Axial-Flow Compressor Over the Centrifugal Compressor . 621 13.2.2 Advantages of Centrifugal-Flow Compressor Over the Axial-Flow Compressor 622 13.2.3 Main Points for Comparison of Centrifugal and Axial Compressors . 623 13.3 Mean Flow (Two-Dimensional Approach) 623 13.3.1 Types of Velocity Triangles . 625 13.3.2 Variation of Enthalpy Velocity and Pressure of an Axial Compressor 627 13.4 Basic Design Parameters . 635 13.4.1 Centrifugal Stress 635 13.4.2 Tip Mach Number . 637 13.4.3 Fluid Deflection 638 13.5 Design Parameters 639 13.5.1 Degree of Reaction 640 13.6 Three-Dimensional Flow . 642 13.6.1 Axisymmetric Flow 643 13.6.2 Simplified Radial Equilibrium Equation . 644 13.6.3 Free Vortex Method . 646 13.6.4 General Design Procedure 651 13.7 Complete Design Process for Compressor . 659 13.8 Rotational Speed (RPM) and Annulus Dimensions . 659 13.9 Determine Number of Stages (Assuming Stage Efficiency) 662 13.10 Calculation of Air Angles for Each Stage at the Mean Section . 663 13.10.1 First Stage 663 13.10.2 Stages from (2) to (n − 1) . 664 13.10.3 Last Stage 665 13.11 Variation of Air Angles from Root to Tip Based on the Type of Blading (Free Vortex–Exponential–First Power) 666 13.12 Blade Design 667 13.12.1 Cascade Measurements 667 13.12.2 Choosing the Type of Airfoil 672 13.12.3 Stage Performance . 672 13.12.3.1 Blade Efficiency and Stage Efficiency 677 13.13 Compressibility Effects . 679 13.14 Performance . 687 13.14.1 Single Stage 687 13.14.2 Multistage Compressor 689 13.14.3 Compressor Map 690 13.14.4 Stall and Surge . 691 13.14.5 Surge Control Methods 694 13.14.5.1 Multispool Compressor 694 13.14.5.2 Variable Vanes 694 13.14.5.3 Air Bleed 695 13.15 Case Study . 701 13.15.1 Mean Section Data 701 13.15.2 Variations from Hub to Tip . 701 13.15.3 Details of Flow in Stage Number 2 . 70313.15.4 Number of Blades and Stresses of the Seven Stages . 704 13.15.5 Compressor Layout 705 13.16 Erosion 708 13.17 Fouling 712 Problems 714 References 725 Chapter 14 Axial Turbines . 727 14.1 Introduction . 727 14.2 Comparison of Axial Flow Compressors and Turbines . 729 14.3 Aerodynamics and Thermodynamics for a Two-Dimensional Flow . 730 14.3.1 Velocity Triangles . 730 14.3.2 Euler’s Equation . 732 14.3.3 Efficiency, Losses, and Pressure Ratio . 734 14.3.4 Nondimensional Quantities . 738 14.3.5 Several Remarks . 746 14.4 Three Dimensional 752 14.4.1 Free Vortex Design 753 14.4.2 Constant Nozzle Angle Design (α2) 753 14.4.3 General Case . 756 14.4.4 Constant Specific Mass Flow Stage 757 14.5 Preliminary Design . 772 14.5.1 Main Design Steps . 772 14.5.2 Aerodynamic Design 772 14.5.3 Blade Profile Selection 774 14.5.4 Mechanical and Structural Designs . 775 14.5.4.1 Centrifugal Stresses 775 14.5.4.2 Centrifugal Stresses on Blades 776 14.5.4.3 Centrifugal Stresses on Discs 777 14.5.4.4 Gas Bending Stress . 779 14.5.4.5 Centrifugal Bending Stress 781 14.5.4.6 Thermal Stress 781 14.5.5 Turbine Cooling . 782 14.5.5.1 Turbine Cooling Techniques . 782 14.5.5.2 Mathematical Modeling 784 14.5.6 Losses and Efficiency . 790 14.5.6.1 Profile Loss (Y p) . 790 14.5.6.2 Annulus Loss . 791 14.5.6.3 Secondary Flow Loss 791 14.5.6.4 Tip Clearance Loss (Y k) . 792 14.6 Turbine Map . 793 14.7 Case Study . 797 14.7.1 Design Point . 797 Summary 804 Problems 805 References 811 Chapter 15 Radial Inflow Turbines . 813 15.1 Introduction . 813 15.2 Thermodynamics 814 15.3 Dimensionless Parameters 81815.4 Preliminary Design . 819 15.5 Breakdown of Losses . 822 15.6 Design for Optimum Efficiency 825 15.7 Cooling 829 Problems 830 References 832 Chapter 16 Module Matching . 833 16.1 Introduction . 833 16.2 Off-Design Operation of a Single-Shaft Gas Turbine Driving a Load . 833 16.2.1 Matching Procedure . 834 16.2.2 Different Loads 839 16.3 Off Design of Free Turbine Engine 839 16.3.1 Gas Generator 840 16.3.2 Free Power Turbine 841 16.4 Off Design of Turbojet Engine . 846 Problems 851 References 853 Appendix A 855 Appendix B 861 Appendix C 863 Index Index A A321, 552 A-40, 42 A-53-L13B, 324 Acoustics model theory, 543–544 Aeolipile, 4 Aero engines, 3 aerospace engines classification, 28–29 aircraft and power plant industry, 44–52 gas turbine engines advanced ducted fan, 42–43 propfan engine, 23–24, 41–42 turbofan engines, 21–23, 37–41 turbojet engines, 15–18, 33–34 turboprop engines, 18–20, 34–35 turboshaft engines, 20–21, 35–36 industrial gas turbine engines, 27–28, 43–44 jet engines, 13 pulsejet engine, 24–25, 30 ramjet engines, 25–27, 29–30 scramjet engines, 27, 31 turboramjet engines, 31 turborocket engines, 32 prejet engines history, 3–13 Aerospace engines classification, 28–29 Aft fan, 258–261 Afterburner, 498–499 adiabatic efficiency inoperative, 168–169 operative, 169 mixed turbofan engine with ideal cycle, 256–258 real cycle, 258 single spool turbojet, 153 inoperative, 154 operative, 154–156 thrust augmentation, 189–190 pressure loss, 191–194 two-spool turbojet example, 183–184 thermodynamic analysis, 184–186 Afterburning nozzles, 514–517 Air angle determination at mean section first stage, 663–664 from (2) to (n–1), 664–665 last stage, 665–666 Air angle variation, 666–667 Air bleed, 695 Air intakes, 448–449 Air speed, 68 Air-breathing engines, 28 Airbus A330, 536 Airbus A380, 47 Aircraft range, 82–85 AlliedSignal, 19, 22 AlliedSignal 331, 552 AlliedSignal 731 turbofan engines, 552 Allison, 17, 19, 339 Allison T38, 322 Alstom, 27 Altitude, 68–69 Ames-Dryden-1 (AD-1), 348–349 AN-70, 338 Anglo-French activities, supersonic aircraft, 346–347 BAe-Aerospatiale AST, 346 Concorde, 346, 347 Annular combustion chamber, 390 Annulus loss, 791 Antonov AN-180, 322, 339 Antonov AN-20, 321 Antonov AN-38,-140, 307 ATREX, 365, 367 Aurora, 370 Avco Lycoming TF25, 386 Aviadvigatel D-30KPV, 41 Axial turbines, 727 aerodynamics and thermodynamics for two-dimensional flow Euler’s equation, 732–734 loss coefficient, 737–738 nondimensional quantities, 738–746 pressure ratio, 736–737 remarks, 746–752 stage efficiency, 734–736 velocity triangles, 730–732 axial-flow compressors, comparison with, 729–730 case study design point, 797–804 mean line flow, 798–799 three-dimensional variations, 799–800 blade numbers for nozzle and rotor, 800 chord length, 801 blade material selection, 803 stresses on rotor blades, 803 losses calculations, 803 turbine efficiency, 804 preliminary design aerodynamic design mean line design analysis, 772–773 three-dimensional flow, 773 blade profile selection, 774–775 design steps, 772 loss and efficiency annulus loss, 791 profile loss (Yp), 790–791 secondary flow loss, 791–792 867868 Index Axial turbines (continued) tip clearance loss (Yk), 792–793 mathematical modeling, 784–790 mechanical and structural designs centrifugal bending stress, 781 centrifugal stress, 775–779 gas bending stress, 779–781 thermal stress, 781 thermal cooling techniques, 782–784 three dimensional, 752 constant nozzle angle design, 753–756 constant specific mass flow stage, 757 free vortex design, 753 general case, 756–757 turbine map, 793–797 Axial–centrifugal compressor, 552 Axial-flow compressors and fans, 619 air angle determination at mean section first stage, 663–664 stages from (2) to (n–1), 664–665 last stage, 665–666 air angle variation, 666–667 axial turbines, comparison with, 729–730 basic design parameters centrifugal stress, 635–637 fluid deflection, 638–639 tip Mach number, 637–638 blade design airfoil type, choosing, 672 cascade measurements, 667–672 stage performance, 672–679 blade efficiency and stage efficiency, 677–679 case study blades and stresses of seven stages, 704 compressor layout, 705 flow details, in stage number 2, 703–704 mean section data, 701 variations from hub to tip, 701–703 centrifugal compressors, comparison with, 623 advantages of, over axial-flow compressors, 622 advantages over, 621–622 complete design process for compressor, 659 compressibility effects, 679–687 design parameters, 639–642 degrees of reaction, 640–642 erosion, 708–712 fouling, 712–714 mean flow (two-dimensional approach), 623–635 enthalpy velocity variations, 627–635 velocity triangle types, 625–627 performance compressor map, 690–691 multistage compressor, 689–90 single stage, 687–689 surge control methods, 694–701 and stall, 691–693 rotational speed (RPM) and annulus dimensions, 659–662 stage determination, 662–663 three-dimensional flow, 642 axisymmetric flow, 643–644 free vortex method, 646–651 general design procedure, 651–659 simplified radial equilibrium equation, 644–646 Axisymmetric flow, 643–644 Axisymmetric nozzle, 505 B B-25 Mitchells, 602 B737-500, 552 BAe-Aerospatiale AST, 346 Balanced-beam nozzle, 515 Barber, John, 6 Barber’s gas turbine, 6, 7 Bell Aircraft Corporation X-2, 367 Bell X-1, 345, 346 Blackbird SR-71, 345, 346 Blade design airfoil type, choosing, 672 cascade measurements, 667–672 stage performance, 672–679 blade efficiency and stage efficiency, 677–679 Blade material selection, 803 Blade numbers for nozzle and rotor, 800 Boeing 2707-100, 200, 300, 346 Boeing 2707-100/200, 347, 348 Boeing 2707-300, 348 Boeing 707, 552 Boeing 727, 603 Boeing 737, 552 Boeing 747, 603 Boeing 777, 536 Boeing 787 Dreamliner, 46–47 Boeing Pelican ULTRA, 45, 46 Boeing Vertol Chinook CH-47, 336 Boeing X-32, 539 Boeing, 339 Branca’s stamping mill, 5, 6 Brayton cycle, 388–389 Breguet’s equation, 83 Bristol 223, 346 Bristol Company’s, 346 Brittle erosion, 603 Bucket target system, 531 Buzz bombs, 97 C Can combustion chamber, 390 Can-annular combustion chamber, 390 Cascade-type reverser, 532 Casing, 620 C-D nozzle, 508 Central plug, 513 Centrifugal bending stress, 781 Centrifugal compressors, 551 axial-flow compressors, comparison with, 623 advantages of, over centrifugal flow compressors, 621–622 advantages over, 622Index 869 characteristic performance of, 598–601 classification of, 556–559, 559 diffuser, 589 vaned diffuser, 592–598 vaneless diffuser, 590–592 discharge systems, 598 erosion, 602–609 theoretical estimation of, 606–609 governing equations, 559 continuity equations, 562 energy equation, 563–567 momentum equations/Euler’s equation, 562–563 prewhirl, 570–581 slip, 567–570 layout of, 560 diffuser, 554–556 impeller, 533–534 scroll/manifold, 556 Centrifugal stress, 635–637, 775–779 on blades, 776–777 on discs, 777–779 CF6-50C2, 861 CF6-80C2, 861 CF700 turbofan engine, 258 CFM56-5C2, 862 Channel and pipe diffusers, 555–556, 589 Chevrons, 545–546 Chimney jack, 5, 6 Choked nozzle, 67–68 Choking point, 602 Chord length, 801 Clamshell door system, 531 Coanda effect, 540 Combined gas turbines, 422–423 Combustion chamber performance combustion efficiency, 491 combustion intensity, 492–493 combustion stability, 491–492 pressure losses, 490–491 Combustion chamber, 100, 115–116, 127, 181 adiabatic efficiency, 168 forward fan unmixed single-spool turbofan engine, 217–218 single spool turbojet, 151–152 two-spool turbofan engines, 223 Combustion systems, 481 afterburner, 498–499 aircraft fuels, 496–497 chemistry of combustion, 487–490 combustion chamber performance combustion efficiency, 491 combustion intensity, 492–493 combustion stability, 491–492 pressure losses, 490–491 combustion process, 485–487 cooling, 493–495 emissions, 497 material, 495–496 pollutant formation NOx emissions, 497–498 SiO2 emissions, 498 subsonic combustion chambers annular combustion chambers, 484–485 tubo-annular combustion chambers, 483–484 tubular combustion chambers, 482–483 supersonic combustion chamber, 485, 499–501 Compressibility effects, 679–687 Compressible flow, 590–591 Compressor adiabatic efficiency, 167 forward fan unmixed single-spool turbofan engine, 217 single spool turbojet, 151 Compressor fouling, 713 Compressor map, 600, 601 Concorde, 345, 346, 347, 513 Constant nozzle angle design, 753–756 Constant specific mass flow stage, 757 Continuity equation, 562 Continuum approach, 603 Control volume, 59 Convair BJ-58, 348, 352 Convection, 782–783 cooling, 787–790 Convection-film cooling, 494 Convergent nozzles, 508, 511, 518–522 Convergent–divergent nozzles, 508–511 CP-140 Aurora, 307 Cs-1 engine, 18 D da Vinci, Leonardo, 5 Dash 8, 311 DC8, 552 DC9, 552 De Haller number, 639 De Havilland Canada Dash 8, 307 Degrees of reaction, 640–642 Diffuser efficiency, 455 Diffuser, 554–556, 589 vaned diffuser, 592–598 vaneless diffuser, 590–592 Diffuser/intake, 126–127 valved pulsejet, 99–100 Diffusion factor (DF), 6392 Disc, 620 Discharge systems, 598 Discrete approach, 603 Divergent nozzle, 522–529 expansion waves inside nozzle, drawing procedure for, 528–529 minimum length divergent nozzle, design procedure for, 527–528 nozzle contour, analytical determination of, 525–527 Double-shaft engine, 406–415 free power turbine, 406–408 two discrete shafts (spools), 408–415 Double-spool turboshaft, 335–336 free power turbine, 336 gas generator turbine, 335–336 Dual-entry impellers, 557 Ductile erosion, 604 simulation, 604 Dynamic compressors, 551–552870 Index E Eccentric coannular nozzle, 546 Effective cooling, 495 Effective Perceived Noise deciBel (EPNdB), 541 Ejector nozzle, 513 Ejector-suppressor, 544 Electron Beam (EB)-welded rotor, 390 Enclosed machines, 551 Endurance factor, 85–87 Energy balance for high-pressure spool, 230 for low-pressure spool, 230–231 Energy equation, 563–567 Engine performance adiabatic efficiency, 167–170 Enthalpy velocity variations and axial compressor pressure, 627–635 Equivalent specific fuel consumption (ESFC), 82 Erosion rate, 603–604 theoretical estimation of, 605–609 Erosion, 602–609, 708–712 Euler’s equation, 732–734 for turbomachinery See Momentum equation Eurocopter EC120 Colibri, 336 European hypersonic transport vehicle (EHTV), 369 Exhaust system, 505 arrangement of, 506 noise, 541–546 acoustics model theory, 543–544 jet noise reduction, methods for, 544–546 nozzle, 507–517 afterburning nozzles, 514–517 governing equations, 508–512 convergent–divergent nozzles, 508–511 convergent nozzle, 511 variable geometry nozzles, 512–514 thrust reversal, 529–537 classification of, 531–535 ground roll distance calculation, 536–537 methods of, 531 thrust vectoring, 537–541 governing equations, 540–541 two-dimensional supersonic nozzle calculation, 517 convergent nozzle, 518–522 divergent nozzle, 522–529 expansion waves inside nozzle, drawing procedure for, 528–529 minimum length divergent nozzle, design procedure for, 527–528 nozzle contour, analytical determination of, 525–527 Extended turbomachines, 551 External thrust vectoring, 537 F F-111, 513 F-15, 448 F-15 S, 507 F-16, 539 F-18, 539 F-22, 539 F-22 Raptor, 507 F-35, 539 Fan two-spool turbofan engines, 222 Fan nozzle, 227 forward fan unmixed single-spool turbofan engine, 219–221 Federal Aviation Administration (FAA), 258 Film cooling, 494, 784, 785–787 578-DX, 339 Flow coefficient, 818 Fluid deflection, 638–639 Fluidic thrust vectoring, 537, 540 Flush intake, 450 Flying bombs, 98 Fokker F-27, 321 Forward fan mixed-flow turbofan engine, 242 two-spool engines, 242–245 unmixed turbofan engine single-spool configuration, 216–221 three-spool engine, 235–237 two-spool engines fan and low-pressure compressor on one shaft, 221–224 fan driven by LPT and compressor driven by HPT, 232–233 geared fan driven by LPT and compressor driven by HPT, 233–235 Fouling, 712–714 Four-stroke engine, 8 Frank Whittle engines, 552 Free power turbine, 841–846 Free turbine engine, 839 off-design free power turbine, 841–846 gas generator, 840–841 Free vortex design, 646–651, 753 Front frame, 620 Fuel consumption, 102, 106 Fuel, 97, 99, 100 deflagration, 103 detonation, 103 Fuel-to-air ratio, 59, 100, 109 Full-coverage film cooling, 784 Full-induced impeller, 557 Fuselage installation, power plants, 442–443 and tail installation, combination, 444 Future flight, technology challenges of, 350 G Garrett GTCP-85, 552 Gas bending stress, 779–781 Gas generator, 840–841 Gas turbine engines, 727 advanced ducted fan, 42–43 propfan engine, 23–24, 41–42 samples, 863–865 turbofan engines, 21–23, 37–41 turbojet engines, 15–18, 33–34 turboprop engines, 18–20, 34–35Index 871 turboshaft engines, 20–21, 35–36 See also Industrial gas turbines GE engines, 21, 22, 24, 40, 44, 179, 183, 232, 256, 258–259, 273–274, 322, 339, 341, 428, 552, 602, 861 General Electric (GE), 15, 16–17, 18–19, 21, 22, 24, 27, 47, 103, 215, 339, 498 German sänger space transportation systems, 369 Gloster Aircraft Company, 14 Gloster E28/39, 14 Gravesand, Jacob, 6 H Hamilton Standard 777 (ACTCS), 552 Harrier, 539 Hartzell propeller, 311 Heinkel’s He-178, 15 Hercules C-130, 307 Hero, 4 High-pressure compressor (HPC), 181 two-spool turbofan engines, 223 High-pressure turbine (HPT), 181–182 two-spool turbofan engines, 223 High-speed civil transport project (HSCT), 349 High-speed supersonic and hypersonic engines commercial technology, future of, 349–350 future flight, technology challenges of, 350 hypersonic flight, 367–370 over/under turboramjet, 356–358 propulsion hybrid cycle engine, 350–352, 351 multistage vehicle, 350, 351 scramjet engines, 370–372 supersonic aircraft and programs, 345–349 Anglo-French activities, 346–347 Russian activities, 347 U.S. activities, 347–349 turboramjet engine, 352, 358–367 wraparound turboramjet, 352–356 Hitachi, 553 Honeywell ALF502R, 234, 235 Hybrid cycle engine, 350–352, 351 HYCAT-1, 357 HYCAT-1-A, 361, 361 Hydraulic turbine, 727 Hydrocarbon fuel, 138 Hydrogen fuel, 138 Hyper soar aircraft, 47, 48 Hypersonic aurora aircraft, 47, 48 Hypersonic flight, 367–370 commercial transport, 369–370 history, 367–369 military applications, 370 Hypersonic vehicle, 47 I Ideal ramjet, 107–109 Impeller, 533–534 types, 558, 581–589 Impingement cooling, 783 Impingement-film cooling, 494 Impulse blading, 642 Impulse turbine, 731 Incompressible flow, 590–591 Inducer duct, 553 Industrial gas turbines, 27–28, 43–44, 385–386 categories, 386–387 combined gas turbines, 422–423 marine applications, 423–427 additional components, 424–426 examples, 426–427 micro gas turbines (µ-gas turbines), 428–430 design challenges, 429–430 versus typical gas turbines, 429 offshore gas turbines, 427–428 types, 387–388 double-shaft engine, 406–415 single-shaft engine, 388–406 three spool, 415–421 Inlet single spool turbojet, 151 Inlet guide vanes (IGVs), 557, 571, 620 Inlet lip, 449 Intake, 180 adiabatic efficiency, 167 forward fan unmixed single-spool turbofan engine, 217 two-spool turbofan engines, 221 Integrated intake, 449–450 Internal thrust vectoring, 537 Inward-flow radial (IFR), 813 Iris nozzle, 513–514 IRR Torpedo Tube Vehicle, 27 Isentropic efficiency, 454 Isentropic flow, 107 Ishikawajima Ne-20, 17 J J58-1, 345, 365 Jet engines, 13 factors affecting trust air speed, 68 altitude, 68–69 jet nozzle, 67 mass airflow, 68 ram effect, 69–70 performance parameters, 70 aircraft range, 82–85 endurance factor, 85–87 overall efficiency, 77–80 propeller efficiency, 76–77 propulsive efficiency, 70–75 range factor, 85 specific fuel consumption, 81–82 specific impulse, 87–91 takeoff thrust, 80–81 thermal efficiency, 75–76 pulsejet engine, 24–25, 30 ramjet engines, 25–27, 29–30 scramjet engines, 27, 31872 Index Jet engines (continued) thrust force, 57–67 turboramjet engines, 31 turborocket engines, 32 Jet exhaust noise, 541, 544 Jet noise reduction, methods for, 544–546 Jet nozzle, 67 Jet pipe, 182, 514 Jetcruzer 500, 310, 322 JT-8D-17R, 862 JT-9D-7R4, 861 − −862 Jumo 004-B jet engine, 15 K King Air A100, 307 KNAAPOAS-20P, 322, 323 L LM2500, 386, 426 Lobe-tube nozzle, 544 Lockheed C-130 Hercules, 603 Lockheed F-104, 17 Lockheed L-2000, 346, 348 Lockheed Missiles & Space Co (X-7), 367 Lockheed P-3A, 307 LoFlyte, 369 Loss coefficient, 737–738 Louver cooling, 493 Low emissions combustor (LEC), 498 Low-pressure compressor (LPC), 181 two-spool turbofan engines, 222 Low-pressure turbine (LPT), 182 two-spool turbofan engines, 223–224 LTS101-600A, 324 Lycoming T-55-L-7C, 336 Lyulka AL-7, 16 M Mach number, 111, 114, 523–524 Marine gas turbine, 423–427 additional components, 424–426 high hat assembly, 424 electric strip heater, 424 anti-icing manifold, 425 exhaust duct system, 425 expansion joint, 425 intake duct, 425 intake silencer, 425 examples, 426–427 Mass airflow, 68 McDonnell Douglas, 339 McDonnell XF-88B, 322 MD-80, 339, 340, 552 MD-94X, 339 Mean flow (two-dimensional approach), 623–635 enthalpy velocity variations, 627–635 velocity triangle types, 625–627 Mean line flow, 798–799 Mechanical thrust vectoring, 537–538 Messerschmitt Me 262, 15 Micro gas turbines (µ-gas turbines), 428–430 design challenges, 429–430 versus typical gas turbines, 429 MiG-29, 539 MiG-35, 539 Mitsubishi MU-2, 307 Mixed turbofan engine with afterburner, 255–258 ideal cycle, 256–258 real cycle, 258 Module matching off-design of free turbine engine, 839 free power turbine, 841–846 gas generator, 840–841 of single-shaft gas turbine, 833–839 different loads, 839 matching procedure, 834–838 of turbojet engine, 846–850 Momentum equation, 562–563 MT30, 427 Multipurpose small power units (MPSPU), 552 Multispool compressor, 694 Multistage vehicle, 350, 351 N National Aerospace Plane (NASP) X-30, 368 Newton, Sir Isaac, 4, 6 Newton’s steam wagon, 6, 7 NK144, 347 Noise, 541–546 acoustics model theory, 543–544 jet noise reduction, methods for, 544–546 Nonafterburner two-spool turbojet example, 179–180 thermodynamic analysis, 180–183 Non–air-breathing engines, 28, 44 Nondimensional quantities, 738–746 Nonfree vortex, 757 Normal shock waves, 460 North American Aviation X-10, 367 North American Aviation X-15, 367 NOx emissions, 497–498 Nozzle map, 846 Nozzle, 116–117, 127, 505, 507–517 adiabatic efficiency inoperative, 169 operative, 169–170 afterburning nozzles, 514–517 choked, 67–68 governing equations, 508–512 convergent–divergent nozzles, 508–511 convergent nozzle, 511 single spool turbojet, 153–156 two-spool turbojet, 183, 185–186 unchoked, 60, 68, 76 variable geometry nozzles, 512–514Index 873 O Oblique shock waves, 461–462 Offshore gas turbines, 427–428 Osprey V-22, 309 Otto-cycle engines, 8 Outlet guide vanes (IGVs), 620 Over/under turboramjet, 356–358 dual mode, 358 ramjet mode, 358 turbojet mode, 358 Overall efficiency, 77–80 P P & W JT 9D-7A engines, 603 Particle trajectories, 603 Pegasus engine, 262 Pipe and channel diffusers, 556, 589 Pitot intakes, 449–450 Podded intakes, 449 flow characteristics, 450 Power JetW.1, 14 Power plant installation, 437 air intakes, 448–449 case study, 472–475 intake and engine, matching between, 470–471 subsonic aircraft, 437 turbojet and turbofan engines fuselage and tail installation, combination, 444 fuselage installation, 442–443 wing and tail installation, combination, 443–444 wing installation, 438–442 turboprop installation, 444–446 subsonic intakes, 449–457 intakes performance, 451–453 performance parameters, 453–457 turboprop inlets, 457 supersonic aircraft civil transports, 446–447 military aircrafts, 447–448 supersonic intakes, 457 external compression intake, 462–467 gas dynamic relations normal shock waves, 460 oblique shock waves, 461–462 internal compression intake, 467–468 mixed compression intake, 468–470 Pratt & Whitney, 16, 20, 21, 49–50, 103, 234, 552, 603 Pressure ratio, 736–737 Prewhirl, 570–581 Primary combustion zone, 486–487 Profile loss (Yp), 790–791 Progress D-27, 339 Propeller efficiency, 76–77 Propeller thrust, 315, 319 Propelling nozzle, 514 Propfan engine, 23–24, 41–42, 337–340 Propulsive efficiency, 70–75, 128 PT 6B, 308 PT6, 552 Puller turboprop, 311 Pulse detonation engine, 97, 103 Pulsejet engine, 24–25, 30, 97 pulse detonation engine, 103 valved pulsejet, 98–102 valveless pulsejet, 102–103 Pusher turboprop, 310–311 PW 120A, 311 PW100, Pratt & Whitney, 552 PW200, 308 R Radial inflow turbines, 813 cooling, 829–830 dimensionless parameters, 818–819 losses, breakdown of, 822–825 optimal efficiency, design for, 825–829 preliminary design, 819–822 thermodynamics, 814–818 Radial turbomachine, 551 Ram effect, 69–70, 106 Ramjet engines, 25–27, 29–30, 106 case study, 129 ideal, 107–109 real cycle, 110 Range factor, 85 Rayleigh flow, 115–116, 127 RB-211 series, 21, 235–236, 386, 435, 603, 861 − −862 Reaction engines, 57 Real cycle, of ramjet engines, 110 Rear frame, 620 Relative eddy, 567–568 RFA24, 553 RFA36, 553 Rolls-Royce, 17, 18, 21, 22, 47, 215 Rolls-Royce Dart, 321, 482 Rolls-Royce DART, 552 Rolls-Royce/Snecma Olympus 593 turbojet, 17, 18, 184 Rotational speed (RPM) and annulus dimensions, 659–662 Rotor blade, 619, 620–621 Rotor meridional velocity ratio, 818 Russian activities, supersonic aircraft, 347 Tupolev TU-144, 347 Russian TU-95, 307, 308 S S-300P, 537 Saab 340, 307 Saab Viggen, 513 Scramjet engines, 27, 31, 370–372 combustion chamber, 373–375 fuel mixing, 375 intake, 372–373 nozzle, 376 performance parameter, 376–380 thermodynamics, 372 Scroll See Volute Secondary flow loss, 791–792 Selective catalytic reduction (SCR), 498 Selective noncatalytic reduction (SNCR), 498 737–200 aircrafts, 602874 Index Shaft power, 76, 315 Shenyang J-8 fighter, 17 Shock thrust vector control, 540 Shock wave normal, 115, 126 oblique, 114–115 Shrouding, 557 Simplified radial equilibrium equation, 644–646 Single spool engine turbojet actual case, 165–175 example, 149–150 ideal case, 150 operative and inoperative afterburner, comparison, 175–178 thermodynamic analysis, 150 Single stage centrifugal compressor, 556, 557 Single-entry impeller, 557 Single-shaft engine, 388–406 combined intercooling, regeneration and reheat, 401–406 intercooling, 399–401 regeneration, 395–397 reheat, 398–399 single compressor and turbine ideal cycle, 389–392 real cycle, 392–395 Single-shaft gas turbine off-design, 833–839 Single-spool engine turbofan forward fan unmixed, 216–221 Single-spool turboprop, 312–316 combustion chamber, 313 compressor, 313 intake, 312–313 turbine, 314–316 Single-spool turboshaft, 334–335 combustion chamber, 335 compressor, 335 diffuser, 334–335 turbine, 335 Slip, 561, 567–570 Solar electric Helios Prototype, 46, 47 Specific impulse, 87–91 Specific speed, 819 Specific thrust, 198 Spike motion, 123 Splash cooling, 493 SR-71, 352 SR-71, 513 SRB space shuttle, 537 Stage efficiency, 734–736 Stage loading, 818 Stagnation pressure ratio, 454 Stanton number, 786, 787 Stator blade, 619 Steady-state stress, 775 Steam turbine, 727 Stoichiometric ratio, 487 Su-30, 539 Su-37, 539 Su-47, 539 Subsonic aircraft, 437 turbojet and turbofan engines fuselage installation, 442–443 and tail installation, combination, 444 wing installation, 438–442 and tail installation, combination, 443–444 turboprop installation, 444–446 Subsonic combustion chambers annular combustion chambers, 484–485 tubo-annular combustion chambers, 483–484 tubular combustion chambers, 482–483 Subsonic intakes, 449–457 intakes performance, 451–453 performance parameters, 453–457 turboprop inlets, 457 Subsonic nozzle, 517 Sud-Aviation of France, 346 Sukhoi SU-35, 507 Sulfur dioxide (SiO2) emissions, 498 Sunstrand Turbomach APS 200, 552 SunStrand Turbomach T-100, 552 Super Caravelle, 346 Supersonic aircraft civil transports, 446–447 military aircrafts, 447–448 Supersonic combustion chamber, 485, 499–501 Supersonic compressor, 679 Supersonic intakes, 457 classification, 458 external compression intake, 462–467 gas dynamic normal shock waves, 460 oblique shockwaves, 461–462 internal compression intake, 467–468 mixed compression intake, 468–470 Supersonic transport aircraft committee (STAC), 346 Surging, 603 Swingfire small battlefield, 537 Switch-in deflector system, 266 cruise, 267–270 takeoff conditions, 270–272 Swiveling nozzles, 261–262 T T-31 flight, 18 T53 Honeywell engine, 552 Tabs, 545 Tail Pipe, 100 Takeoff thrust, 80–81 Thermal efficiency, 75–76 Thermal stress, 781 Thermodynamics, first law of See Energy equation Three spool, 415–421 Three-dimensional flow, 642 axisymmetric flow, 643–644 free vortex method, 646–651 general design procedure, 651–659 simplified radial equilibrium equation, 644–646 Three-dimensional thrust vectoring, 539 Three-spool engine turbofan forward fan unmixed, 235–237Index 875 Thrust force, 57–67, 109, 231–232 Thrust reversal, 505, 529–537 classification of, 531–535 ground roll distance calculation, 536–537 methods of, 531 Thrust-specific fuel consumption (TSFC), 57, 81 Thrust vectoring, 505, 537–541 governing equations, 540–541 Tip clearance loss (Yk), 792–793 Tip Mach number, 637–638 Transonic compressor, 679 Transpiration cooling, 495, 784 Trents, 1, 18, 22, 23, 28, 236„ 427, 449, 861 − −862, 865 Trust specific fuel consumption, 81–82 Tupolev Tu-144, 345, 347 Turbine efficiency, 804 Turbine inlet temperature (TIT), 152 Turbine map, 793–797 Turbine nozzle, 227 forward fan unmixed single-spool turbofan engine, 219 Turbine, 727 adiabatic efficiency, 168 forward fan unmixed single-spool turbofan engine, 218 single spool turbojet, 152 See also Axial turbines Turbofan engine, 21–23, 37–41, 215, 619 aft fan, 258–261 forward fan mixed-flow engine, 242 two-spool engines, 242–245 forward fan unmixed single-spool configuration, 216–221 three-spool engine, 235–237 two-spool engines fan and low-pressure compressor on one shaft, 221–224 fan driven by LPT and compressor driven by HPT, 232–233 geared fan driven by LPT and compressor driven by HPT, 233–235 fuselage installation, 442–443 and tail installation, combination, 444 mixed, with afterburner, 255–258 ideal cycle, 256–258 real cycle, 258 performance analysis, 273 V/STOL, 261 swiveling nozzles, 261–262 switch-in deflector system, 266–272 cruise, 267–270 takeoff conditions, 270–272 wing installation, 438–442 and tail installation, combination, 443–444 Turbojet engine, 15–18, 33–34, 147 classification, 148 fuselage installation, 442–443 and tail installation, combination, 444 off-design, 846–850 optimization, 198 single spool engine actual case, 165–175 example, 149–150 ideal case, 150 operative and inoperative afterburner, comparison, 175–178 thermodynamic analysis, 150 statistical analysis, 188 supersonic, 195 thrust augmentation, 189 afterburning, 190–191 pressure loss, 191–194 water injection, 189–190 two-spool engine afterburner example, 183–184 nonafterburner example, 179–180 thermodynamic analysis, 180–183 thermodynamic analysis, 184–186 wing installation, 438–442 and tail installation, combination, 443–444 Turbomachines, 551 Turbomeca, 20 Turbomeca Arrius 2K1, 336 Turboprop engines, 18–20, 34–35, 307–310 advantages, 309 analogy with turbofan engines, 319 classification based on engine–aircraft configuration, 310–311 intake type, 311–312 number of spool, 311 propeller type, 311 propeller–engine coupling, 311 comparison with turbojet and turbofan engines, 330–333 disadvantages, 309–310 equivalent engine power flight operation, 320 static condition, 320 fuel consumption, 320–321 installation, 321–329 installation, 444–446 performance analysis, 329–330 puller turboprop, 311 pusher turboprop, 310–311 specifications, 324 speed reduction, 309 summary of relation, 340 thermodynamic analysis, 312–319 single-spool turboprop, 312–316 two-spool turboprop, 316–319 Turboramjet engine, 31, 352 case study, 360–365 examples, 365–366 performance, 358–360 dual mode, 359–360 ramjet mode, 359 turbojet mode, 358–359 Turborocket engines, 32 Turboshaft engines, 20–21, 35–36, 309, 333–334 examples, 336–337 power generated by double-spool turboshaft, 335–336 single-spool turboshaft, 334–335 Two stage centrifugal compressor, 556–557, 557 Two-dimensional nozzle, 505876 Index Two-dimensional supersonic nozzle calculation, 517 convergent nozzle, 518–522 divergent nozzle, 522–529 expansion waves inside nozzle, drawing procedure for, 528–529 minimum length divergent nozzle, design procedure for, 527–528 nozzle contour, analytical determination of, 525–527 Two-dimensional thrust vectoring, 540–541 Two-spool engine turbofan forward fan mixed-flow engine, 242–245 forward fan unmixed fan and low-pressure compressor on one shaft, 221–224 fan driven by LPT and compressor driven by HPT, 232–233 geared fan driven by LPT and compressor driven by HPT, 233–235 turbojet afterburner example, 183–184 nonafterburner example, 179–180 thermodynamic analysis, 180–183 thermodynamic analysis, 184–186 Two-spool turboprop, 316–319 combustion chamber, 317 compressor, 317 free power turbine, 317–319 gas generator turbine, 317 intake, 316 U UGM-27 Polaris nuclear ballistic missile, 537 Ultrahigh bypass (UHB) engines See Propfan engine Ultra-high-bypass (UHBP) engines, 23 Unchoked nozzle, 60, 68, 76 Unducted fan (UDF) engines See Propfan engine Unshrouded impeller, 557 Unsteady stress, 775 U.S. activities, supersonic aircraft, 347–349 Ames-Dryden-1 (AD-1), 348–349 Boeing 2707-100/200, 347, 348 Boeing 2707-300, 348 Convair BJ-58, 348 high-speed civil transport project (HSCT), 349 Lockheed L-2000, 348 V V-22 Ospery, 19, 310 V2500, 22, 449, 862 Valved pulsejet, 97, 98–102 Valveless pulsejet, 97, 102–103 Vaned diffuser, 555, 589, 592–598 Vaneless diffuser, 589 compressible flow, 591–592 incompressible flow, 590–591 Variable geometry nozzles, 512–514 Variable vanes, 694–695 Velocity triangles, 560, 625–627, 730–732 Vergeltungswaffe 1 (Vengeance 1), 97 Vertical/short takeoff and landing (V/STOL) switch-in deflector system, 266 cruise, 267–270 takeoff conditions, 270–272 swiveling nozzles, 261–262 Volute, 556 geometry, 598 von Ohain, Hans, 14–15 Voronezh Motor Plant M-9F, 322, 323 W WAC Corporal, 367 Wan Hu, 5 Water injection thrust augmentation, 189–190 Wet rating, 190 Whittle, Sir Frank, 13–14 Wiberg, Martin, 97 Wing installation, power plants, 438–442 above the wing installation, 440–442 buried wing installation, 438 pod installation, 438–440 and tail installation, combination, 443–444 Wraparound turboramjet, 352–356 operation as turbojet engine, 352–355 as ramjet engine, 355–356 Wright brothers, 3, 8–10 X X-15, 368 X-36, 507 X-43, 368 X-43 Hyper-X, 368–369 XF2R-1 (Dark Shark), 322, 322 Y Yak-38, 539 Yak-46, 339 Yak-141, 539
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed رابط مباشر لتنزيل كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed
|
|