Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Matrix and Finite Element Analyses of Structures السبت 29 يونيو 2024, 12:12 pm | |
|
أخواني في الله أحضرت لكم كتاب Matrix and Finite Element Analyses of Structures Madhujit Mukhopadhyay , Abdul Hamid Sheikh
و المحتوى كما يلي :
Contents 1 Basic Concepts of Structural Analysis . 1 1.1 Types of Structures 1 1.2 Objective of Structural Analysis . 1 1.3 Materials and Basic Assumptions 3 1.4 Loads . 3 1.5 General Methods of Analysis . 4 1.5.1 Equilibrium Conditions 4 1.5.2 Compatibility Conditions 5 1.6 Force–Displacement Relationship . 5 1.7 Statical Indeterminacy . 6 1.7.1 Plane Structure . 7 1.7.2 Space Structures 9 1.8 Kinematic Indeterminacy . 10 1.9 Two Approaches of Structural Analysis . 11 2 Energy Principles . 13 2.1 Introduction 13 2.2 Principle of Virtual Work . 13 2.3 Principle of Complementary Virtual Work 15 2.4 Principle of Minimum Potential Energy 15 2.5 Principle of Minimum Complementary Energy 16 2.6 Castigliano’s Theorems 16 2.7 Determination of Displacements . 18 References and Suggested Readings 19 3 Introduction to the Flexibility and Stiffness Matrix Methods 21 3.1 Introduction 21 3.2 The Flexibility Matrix Method 21 3.3 The Stiffness Method 33 3.4 Incorporation of Different Loading Conditions 50 3.5 Other Types of Loadings . 51 3.5.1 Treatment by the Flexibility Matrix Method 52 xixii Contents 3.5.2 Treatment by the Stiffness Method 54 3.6 Incorporation of Shear Deformation 58 3.7 Relation Between Flexibility and Stiffness Matrices 59 3.8 Equivalent Joint Loads . 61 3.9 Choice of the Method of Analysis . 62 References and Suggested Readings 73 4 Direct Stiffness Method 75 4.1 Introduction 75 4.2 Local and Global Coordinate System . 75 4.3 Transformation of Variables 76 4.3.1 Transformation of Member Coordinate Axes . 76 4.3.2 Transformation of Member Displacement Matrix 78 4.3.3 Transformation of the Member Force Matrix . 79 4.3.4 Transformation of the Member Stiffness Matrix . 80 4.4 Transformation of the Stiffness Matrix of the Member of a Truss 81 4.5 Transformation of the Stiffness Matrix of the Member of a Rigid Frame 82 4.6 Transformation of the Stiffness Matrix of the Member of a Grillage 85 4.7 Transformation of the Stiffness Matrix of the Member of a Space Frame 87 4.8 Horizontally Circular Curved Beam Element 89 4.9 Overall Stiffness Matrix 91 4.10 Boundary Conditions 95 4.10.1 Boundary Conditions Corresponding to Skewed Supports 95 4.11 Computation of Internal Forces 97 4.12 Computer Program for the Truss Analysis by the Direct Stiffness Method 97 4.13 Computer Program for the Frame Analysis by Direct Stiffness Method 103 4.14 Computer Program for the Grillage Analysis by the Direct Stiffness Method 106 References and Suggested Readings 111 5 Substructure Technique for the Analysis of Structural Systems 113 5.1 Introduction 113 5.2 Basic Concepts . 114 5.3 Direct Stiffness Method Restated 115 5.4 The Substructure Technique 116 5.5 An Illustrative Example 119 5.6 Computer Program for the Truss Analysis by the Substructure Technique 125Contents xiii References and Suggested Readings 132 6 The Flexibility Matrix Method . 133 6.1 Introduction 133 6.2 Element Flexibility Matrix 133 6.3 Principle of Contragredience 134 6.4 The Equilibrium Matrix 136 6.5 Construction of the Flexibility Matrix of the Structure 138 6.6 Matrix Determination of the Displacement Vector 139 6.7 Determination of Member Forces 140 6.8 Procedure of the Analysis of Statically Indeterminate Structures 141 6.9 Illustrated Examples . 141 6.10 Choice of the Released Structure 145 References and Suggested Readings 148 7 Elements of Elasticity 149 7.1 Introduction 149 7.2 Some Notations and Relations in the Theory of Elasticity . 149 7.2.1 Surface and Body Forces 149 7.2.2 Components of Stresses . 150 7.2.3 Components of Strain . 151 7.2.4 Stress–Strain Relationship . 151 7.3 Two-Dimensional Problems 152 7.3.1 Plane Stress 152 7.3.2 Plane Strain 153 7.3.3 Differential Equations of Equilibrium 154 7.4 Bending of Thin Plates . 156 7.4.1 Basic Assumptions . 156 7.4.2 Deformation of the Plate . 156 7.4.3 Strain–Displacement Relationship 157 7.4.4 Stress–Strain Relationship . 157 7.4.5 Equilibrium Equations 159 7.4.6 Differential Equation for Deflection . 160 7.4.7 Shearing Forces 161 7.5 Boundary Conditions 161 7.5.1 Simply Supported Edge . 161 7.5.2 Clamped Edge . 162 7.5.3 Free Edge . 162 7.5.4 Elastically Supported Edge . 163 7.5.5 Edge Having Elastic Rotational Restraint 164 7.6 Concluding Remarks 164 References and Suggested Readings 165xiv Contents 8 Introduction to the Finite Element Method 167 8.1 Introduction 167 8.2 The Finite Element Method . 167 8.3 Brief History of the Development of the Finite Element Method 169 8.4 Basic Steps in the Finite Element Method for the Solution of Static Problems . 170 8.5 Advantages and Disadvantages of the Finite Element Method 173 References and Suggested Readings 174 9 Finite Element Analysis of Plane Elasticity Problems . 177 9.1 Introduction 177 9.2 Three-Noded Triangular Element 177 9.2.1 Displacement Function 178 9.2.2 Displacement Function Expressed in Terms of Nodal Displacements . 179 9.2.3 Strain–Nodal Parameter Relationship 180 9.2.4 Stress–Strain Relationship . 181 9.2.5 Derivation of the Element Stiffness Matrix . 182 9.2.6 Determination of Element Stresses 183 9.3 Criteria for the Choice of the Displacement Function . 184 9.4 Polynomial Displacement Functions . 185 9.5 Verification of the Convergence Criteria of the Displacement Function of 3-Noded Triangular Element . 185 9.6 Number of Terms in a Polynomial . 186 9.7 Four-Noded Rectangular Element . 187 9.7.1 Displacement Function 188 9.7.2 Displacement Function in Terms of Nodal Displacements . 189 9.7.3 Strain-Nodal Displacement Relationship . 190 9.7.4 Stress–Strain Relationship . 190 9.7.5 Derivation of the Element Stiffness Matrix . 191 9.7.6 Evaluation of Element Stresses . 191 9.8 A Note on the Rectangular Element 191 9.9 A Note on Element Stresses 192 9.10 Computer Program for the Plane Stress Analysis Using Three–Noded Triangular Element . 192 Bibliography 196 10 Isoparametric and Other Element Representations and Numerical Integrations 197 10.1 Introduction 197 10.2 Shape Function or Interpolation Function . 197 10.3 Determination of Shape Functions . 198Contents xv 10.3.1 Linear 2-D Element . 198 10.3.2 Quadratic 2-D Element 200 10.4 Plane Stress Isoparametric Linear Element 201 10.4.1 Displacement Function in Terms of Nodal Parameters . 201 10.4.2 Strain-Nodal Parameter Relationship 201 10.4.3 Evaluation of [B] Matrix . 202 10.4.4 Element Stiffness Matrix 204 10.4.5 Convergence of Isoparametric Elements . 204 10.4.6 Concept of Isoparametric Element 206 10.5 Numerical Integration 206 10.5.1 Gaussian Quadrature Formula 207 10.5.2 Gaussian Integration of Two Variables . 207 10.6 Lagrangian Interpolation . 210 10.7 Natural Coordinates and Higher Order Triangular Elements . 211 10.7.1 One-Dimensional Element . 211 10.7.2 Higher Order Triangular Elements 212 10.8 The Quadratic Triangle for the Plane Stress Problem . 214 10.9 Numerical Integration of Area Coordinates . 216 10.10 Triangular Isoparametric Elements for the Analysis of Plane Stress Problems . 216 10.11 Allman’s Triangular Plane Stress Element 218 10.12 Computer Program for the Solution of Plane Stress Problem Using Isoparametric Element . 222 References and Suggested Readings 234 11 Finite Element Analysis of Plate Bending Problems . 235 11.1 Introduction 235 11.2 Beam Element 235 11.2.1 Displacement Function 236 11.2.2 Displacement Function in Terms of Nodal Displacements . 237 11.2.3 Strain (Curvature)–Nodal Parameter Relationship . 238 11.2.4 Stress (Moment)–Strain (Curvature) Relationship . 238 11.2.5 Derivation of the Element Stiffness Matrix . 239 11.2.6 Determination of Equivalent Loading on the Beam . 240 11.3 Rectangular Plate Bending Element 241 11.3.1 Displacement Function 242 11.3.2 Displacement Function Expressed in Terms of Nodal Displacements . 244 11.3.3 Strain–Nodal Parameter Relationship 245xvi Contents 11.3.4 Stress (Moment)–Strain (Curvature) Relationship . 246 11.3.5 Derivation of the Element Stiffness Matrix . 247 11.4 Parallelogram Element of Plate Bending 249 11.4.1 Displacement Function 251 11.4.2 Displacement Function in Terms of Nodal Displacements . 251 11.4.3 Curvature–Nodal Parameter Relationship 252 11.4.4 Moment–Curvature Relationship 253 11.4.5 Element Stiffness Matrix 254 11.5 Hermitian Polynomial Interpolation 255 11.6 A Conforming Plate Bending Element 256 11.7 Isoparametric Plate Bending Element 257 11.7.1 Displacement Function 257 11.7.2 Strain–Nodal Displacement Relationship . 259 11.7.3 Stress–Strain Relationship . 260 11.7.4 Element Stiffness Matrix 260 11.7.5 Reduced Integration Technique . 261 11.8 Smoothed Stresses 262 11.9 Triangular Plate Bending Elements 263 11.10 DKT Element . 264 11.10.1 Constraint Equations 265 11.10.2 Transformation Matrix 266 11.10.3 Element Stiffness Matrix 269 11.11 The Patch Test 271 11.11.1 The Patch Test for the Plane Stress Element 273 11.11.2 The Patch Test for Plate Bending Elements . 273 11.12 Horizontally Curved Isoparametric Beam . 276 11.12.1 Displacement Function in Terms of Nodal Parameters . 276 11.12.2 Stress–Strain Relations 278 11.12.3 Strain–Displacement Relationship 279 11.12.4 Element Stiffness Matrix 280 11.13 Nonuniform Straight Beam Element . 280 11.14 Computer Program for Isoparametric Quadratic Bending Element . 282 References and Suggested Readings 285 12 Finite Element Analysis of Shells . 287 12.1 Introduction 287 12.2 Flat Shell Element . 287 12.2.1 Transformation of the Stiffness Matrix and Assembly 289 12.3 Shell of Revolution 292 12.4 General Shell Finite Element of Triangular Shape 295Contents xvii 12.4.1 Derivation of the Stiffness Matrix . 296 12.4.2 Consistent Load Vector 302 12.4.3 Condensation of Stiffness Matrix . 303 12.5 Isoparametric General Shell Element . 304 12.5.1 Geometry of the Shell Element . 305 12.5.2 Displacement Field . 306 12.5.3 Strains Inside the Element . 308 12.5.4 Stress–Strain Relationship . 310 12.5.5 Stiffness Matrix of the Shell Element 311 12.6 Vertically Curved Beam Element 312 12.7 Computer Program for the Finite Element Analysis of Shallow Shells of General Shape Using Triangular Element . 314 References and Suggested Readings 317 13 Semi-analytical and Spline Finite Strip Method of Analysis of Plate Bending 319 13.1 Introduction 319 13.2 Beam Function . 320 13.3 Model of the Plate . 324 13.4 The Displacement Function . 325 13.5 Curvature-Nodal Parameter Relationship . 326 13.6 Moment—Curvature Relationship . 327 13.7 Strip Stiffness Matrix 327 13.8 Loading Matrix . 329 13.9 Force Displacement Relationship 330 13.10 Spline Finite Strip Method of Analysis of Plate Bending 331 13.10.1 The Spline Function 332 13.10.2 Displacement Functions . 333 13.10.3 Strain–Displacement Relationship 334 13.10.4 Stiffness Matrix 335 13.10.5 The Loading Matrix . 336 13.11 Computer Program for the Spline Finite Strip Method of Analysis of Plates in Bending . 337 References and Suggested Readings 341 14 Dynamic and Instability Analyses by the Finite Element Method 343 14.1 Introduction 343 14.2 Dynamic Analysis . 343 14.2.1 Torsional Vibration of Shafts . 343 14.2.2 An Example . 346 14.2.3 Flexural Vibration of Beams . 347 14.2.4 In-Plane Vibration of Plates 348 14.2.5 Flexural Vibration of Plates 349 14.3 Elastic Instability Analysis . 351xviii Contents 14.3.1 Column Instability Analysis 351 14.3.2 Plate Instability Analysis 356 References and Suggested Readings 360 15 The Finite Difference Method for the Analysis of Beams and Plates 361 15.1 Introduction 361 15.2 Finite Difference Representation of Derivatives 362 15.2.1 First Derivative . 362 15.2.2 Second Derivative 362 15.2.3 Third Derivative 363 15.2.4 Fourth Derivative . 363 15.3 Errors in the Finite Difference Expressions 364 15.4 Equivalent Concentrated Load 365 15.5 Boundary Conditions for Beam Bending 366 15.5.1 Simple Support . 366 15.5.2 Fixed End . 366 15.5.3 Free End 367 15.6 A Statically Determinate Static Problem 367 15.7 A Statically Indeterminate Static Problem . 370 15.8 Free Vibration of Beams . 371 15.9 Buckling of Columns 373 15.10 Finite Difference Representation of the Plate Equation 375 15.10.1 A Plate Example . 377 References and Suggested Readings 380 16 Adaptive Finite Element Analysis . 381 16.1 Introduction 381 16.2 The Adaptive Finite Element Technique 381 16.3 Superconvergent Patch Recovery Technique . 382 16.4 Example of Verification of SPR . 385 16.5 Error Estimation 386 16.6 ZZ Error Estimator 389 16.7 ZZ—Refinement Framework . 391 16.8 Adaptive Mesh Generation . 392 16.8.1 Mesh Generation Based on Mapping 394 16.8.2 Delaunay Triangulation Method 394 16.8.3 Domain Decomposition Method (Quadtree) 394 16.8.4 Advancing Front Technique 395 References and Suggested Readings 403 17 Geometrical Nonlinear Finite Element Analysis 405 17.1 Introduction 405 17.2 Nonlinear Equation Solving Procedures 405 17.2.1 Direct Iteration Method 406 17.2.2 Newton–Raphson Method . 407Contents xix 17.2.3 Modified Newton–Raphson Method . 408 17.2.4 Incremental Techniques . 409 17.3 Formulation of the Geometric Nonlinear Problem 410 17.3.1 Equilibrium Equations 411 17.3.2 Incremental Equilibrium Equation 412 17.4 Large Deflection Analysis of Plates in b-notation 413 17.5 Large Deflection Analysis of Plates in n-notation 418 17.6 Example of a Pin-Jointed bar . 422 17.7 Computer Program for Geometrically Nonlinear Analysis of Plates . 425 References and Suggested Reading . 429 18 Finite Element Method of Analysis of Stiffened Plates 431 18.1 Introduction 431 18.2 Modeling the Plate and the Stiffener . 431 18.3 Rectangular Stiffened Plate Bending Element . 432 18.3.1 Stiffness Matrix of the Stiffener Element . 433 18.4 Isoparametric Stiffened Plate Bending Element 436 18.4.1 Stiffness Matrix of Arbitrarily-Oriented Eccentric Stiffener 436 References and Suggested Readings 441 19 Selected Topics 443 19.1 Rayleigh–Ritz Method . 443 19.2 An Example 444 19.3 Rayleigh–Ritz Finite Element Method 445 19.4 Weighted Residual Methods 447 19.5 Galerkin Method 449 19.5.1 An Example of Galerkin Method 450 19.6 Galerkin Finite Element Method . 453 19.7 Torsional Stiffness of Prismatic Beam Element 455 19.8 Torsion of Noncircular Sections . 458 19.9 Axi-symmetrical Element 461 19.10 Three-Dimensional Elements . 463 19.10.1 Linear Element (8 Nodes) (Fig. 19.8a) . 463 19.10.2 Quadratic Element (20 Nodes) (Fig. 19.8b) . 464 19.10.3 Cubic Element (32 Nodes) (Fig. 19.8c) 464 19.10.4 A16 Noded Solid (Fig. 19.9a) 465 19.10.5 A24 Noded Solid (Fig. 19.9b) 466 References and Suggested Readings 466 Appendix A: Fixed-End Forces . 467 Appendix B . 469 Index . 471 Index A Adaptive finite element, 381–389, 391, 392, 394–397, 399, 400, 402, 403 Adaptive mesh generation, 389, 392 Advancing front technique, 395, 397 Area coordinate, 264, 265 Assembly of elements, 76, 96 Axisymmetric element, 461 B Background mesh, 395 Banded matrix, 113 Basic functions Beam function, 320–329, 331 Body forces, 149, 154 Boundary conditions, 161–164, 320, 331–333, 361, 366, 369, 370 Buckling, 351–354, 359 C Castigliano’s theorems, 16–19, 182 Characteristics functions, 320 Compatibility conditions, 5 Complementary energy, 16, 17 Concentric stiffener, 432 Consistent load, 302 Consistent mass matrix, 345, 347, 348 Constant strain triangle, 177 Continuum, 167, 168, 170–172, 174 Convergence criteria, 184, 186, 189, 198, 204, 206, 222 D Damping matrix, 345 Delaunay triangulation, 394 Displacements, determination, 18 DKT element, 264 Domain decomposition, 394 Dynamic problems, 343 E Eccentric stiffener, 432 Eigenvalues, 319, 346, 354 Equilibrium conditions, 4, 154, 159 Equilibrium matrix, 136 Error estimation, 386 Error in finite difference method, 364 F Finite difference method, 362–373, 375–377 Finite element, definitions, 167–169 Finite strip, 319–331 Flat shell, 287, 295 Free vibration, 343, 345 Frontal solution, 113 G Galerkin finite element, 453 Galerkin method, 449 Gauss quadrature, 207, 208, 222 Geometric stiffness matrix, 413, 417 H h-adaptivity, 389, 413, 417 Half band width, 95, 106 Hermitian polynomial, 255, 256 Higher order element, 200, 211–213 Horizontally curved beam, 276, 277, 279, 280 Hybrid element, 169 I Interpolation function, 197, 198 Isoparametric element, 197–199, 201–208, 210–223, 232 Isoparametric general shell element, 304–312 J Jacobian, 202, 204, 206, 217, 307, 309 K Kinematic indeterminacy, 10 L Lack of fit, 52 Lagrangian interpolation, 210 Linear triangle, plane stress Loads, 3, 4 Lumped mass matrix, 348, 351 M Mesh, 167, 168, 174 N Natural coordinates, 211 Newton-Cotes formula, 207 Non-linear problems, 405–418 Numerical integration, 204–206, 216, 217, 222 O Orthogonality relationship, 324, 329, 445 Orthotropic plates, 159, 222, 246, 260 P p-adaptivity, 389 Pascal triangle, 185 Patch test, 271 Plane strain, 153, 154, 177, 183 Plane stress, 152, 154, 177, 178, 180, 181, 183, 185, 186, 188, 190, 192 Plate bending, 156–161 Potential energy, 15, 16 Prestrain, 52 Principle of contragredience, 134, 136 Principle of virtual work, 13–15, 239, 327, 440 R Rayleigh-Ritz finite element, 445 Rayleigh-Ritz method, 443 Rectangular element, plane stress, 187–191 Rectangular element, plate bending, 241–243, 245–247, 249 Reduced integration, 260–262 Rotational restraints, elastic, 323, 324 Rotation matrix, 78, 88, 303 S Semianalytical methods, 319, 331 Settlement of supports, 51–54 Shape functions, 198, 200, 201, 205 Shear deformation, 59, 109, 257, 260 Shells, 287–314 Shells of revolution, 292–294 Skew element, 249 Skew support, 95 Smoothed stress, 261 Space frame, 9, 10 Spline finite strip, 331–336, 338 Statical indeterminacy, 6, 7, 9–11 Stiffened plate, 431–441 Stiffener element, 433–436 Structural analysis, objective, 1 Substructure techniques, 113–125, 127–130 Superconvergent patch recovery, 382 Surface force, 149 T Three-dimensional element, 463 Transfinite interpolation, 394 Transformation matrix, 79, 81, 84–86, 88, 93, 96, 103, 106, 291, 293, 298, 299 Triangular element, bending, 263 Triangular element, plane stress, 218–221 V Vertically curved beam, 312, 314 Vibration, 170, 173 Virtual work, 13–15Index 473 W Weighted residual method, 447 Z zz-error estimator, 389 zz-refinement, 391
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Matrix and Finite Element Analyses of Structures رابط مباشر لتنزيل كتاب Matrix and Finite Element Analyses of Structures
|
|