كتاب Design of Brushless Permanent-Magnet Machines
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Design of Brushless Permanent-Magnet Machines

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18979
التقييم : 35443
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Design of Brushless Permanent-Magnet Machines Empty
مُساهمةموضوع: كتاب Design of Brushless Permanent-Magnet Machines   كتاب Design of Brushless Permanent-Magnet Machines Emptyالخميس 12 سبتمبر 2024, 6:31 pm

أخواني في الله
أحضرت لكم كتاب
Design of Brushless Permanent-Magnet Machines

كتاب Design of Brushless Permanent-Magnet Machines D_o_b_13
و المحتوى كما يلي :

Contents
1 GENERAL INTRODUCTION 1
1.1 Definitions and types of brushless motor 1
1.2 Commutation 4
1.3 Operation of 3-phase brushless DC motor 5
1.3.1 EMF waveform
1.3.2 Torque and EMF constants 10
1.3.3 Speed/torque characteristic 11
1.4 Sinewave motors and generators 16
1.4.1 Phasor representation 19
1.4.2 Voltage 22
1.5 Practical considerations 23
2 MACHINE TYPES and APPLICATIONS 25
2.1 Machine configuration 25
2.1.1 Reasons for variety 25
2.1.2 Classification 27
2.2 Radial-flux machines 30
2.2.1 Interior-rotor surface-magnet machines 30
2.2.2 Interior-rotor interior-magnet machines (IPM) 32
2.2.3 Exterior-rotor machines 35
2.3 Axial-flux, linear and other machines
2.4 Gallery 43xiv Contents
3 BASIC DESIGN CHOICES 65
3.1 Machine and drive configuration 67
3.1.1 Squarewave and sinewave drives 67
3.1.1.1 Squarewave drive 67
3.1.1.2 Sinewave drive 68
3.1.2 Salient-pole and nonsalient-pole machines
3.1.2.1 Nonsalient-pole machines
3.1.2.2 Salient-pole machines
3.2 Number of phases, poles and slots
3.2.1 Number of phases
3.2.1.1 Practical considerations
3.2.1.2 Number of phases in electrical systems
3.2.1.3 Number of phases in electrical machines
3.2.1.4 Distribution of coils between phases
3.2.1.5 Number of phases in inverters and rectifiers
3.2.2 Numbers of slots and poles
3.3 Sizing — the ABC of electric machine design
3.3.1 The output equation
3.4 Rotor design
3.4.1 Lengthdiameter ratio
3.4.2 Airgap length
3.4.3 First estimate of magnet dimensions
3.4.4 Exploratory selection of magnet grade
3.4.5 Magnet overhang
3.4.6 Rotor yoke dimensions
3.5 Stator design
3.5.1 Cutting the laminations
3.5.2 Choice of core plate
3.5.3 Stacking
3.5.4 Insulating the slots
3.5.5 Slot-fill factor
3.5.6 Winding and inserting the phase coils
3.5.7 Varnishing
3.5.8 Winding with multiple-strand conductors 228288233
8828833
S3
88^83^
888Contents *v
3.5.9 Number of stator slots 105
3.5.10 Stator core dimensions 105
3.5.11 Stator tooth-tips 106
3.5.12 Cogging and skew 10‘
3.5.13 Management of end-turns 109
3.6 Electrical design of windings 110
3.6.1 Definitions H°
3.6.2 Integral-slot windings Hl
3.6.3 Windings for squarewave drive 115
3.6.4 Fractional-slot windings 1 18
3.6.4.1 A rule and two examples 118
S.6.4.2 The 12/10 motor; alternative windings 124
3.6.4.3 Pitch factor 128
3.6.4.4 Sinewave and squarewave motors 130
3.6.5 Irregular slotting
3.6.6 Systematic analysis of slot pole ratio and windings 133
3.6.7 Winding resistance
3.6.7.1 Resistance calculation 139
3.6.7.2 Relationship between resistance and copper weight 140
3.6.7.3 Variation of resistance with temperature 140
3.6.7.4 AC resistance 143
3.7 Magnet retention 153
4 FLUX, EMF, AND TORQUE 157
4.1 Permanent magnets and magnetic circuits 157
4.1.1 Magnetic equivalent circuits 158
4.1.1.1 Airgap flux distribution 184
4.1.1.2 Clearance gap and equivalent magnet 165
4.1.1.3 Magnet divided by thin bracing bridges 167
4.1.2 Direct solution of Laplace Poisson equations 169
4.1.3 Finite-element method 174
4.2 EMF 178
4.2.1 Formula 1'^
4.2.1.1 EMF constant of squarewave motors 1 •9
4.2.1.2 EMF constant of sinewave motors 180xvi Contents
4.2.2 BLV waveform method 181
4.2.3 Toothflux waveform method 183
4.3 Torque 185
4.3.1 Torque constants 186
4.3.1.1 Three-phase squarewave motor 186
4.3.1.2 Sinewave motors 187
4.4 Torque and inductance 190
4.4.1 Salient-pole machines in phase variables 190
4.4.2 Salient-pole machines in dq axes 193
4.5 i-psi loop 197
4.6 Properties of the elliptical i-psi loop 203
5 INDUCTANCE 209
5.1 Definition of inductance and flux-linkage 210
5.1.1 Alternative definitions 211
5.1.1.1 di/dt 211
5.1.1.2 Flux times turns 211
5.1.2 Other necessary laws of electromagnetism 211
5.1.3 Turns squared 212
5.2 Important practical effects of inductance 213
5.3 Inductance components 214
5.4 Airgap inductance of surface-magnet machines 215
5.4.1 Airgap Self 215
5.4.2 Airgap mutual 217
5.4.3 Examples of airgap inductance calculation 217
5.4.4 General case of airgap inductance
5.5 Slot-leakage inductance 226
5.6 End-winding leakage inductanceContents xvii
5.7 Inductances of slotless (airgap) windings 238
5.7.1 Helical windings 241
5.7.2 Lawrensons method 241
5.8 Equivalent sine-distributed windings 242
5.9 Synchronous inductance 243
5.9.1 Static measurement of synchronous inductance 246
5.10 Inductances of salient-pole machines 247
5.10.1 dq-axis inductances from Park's transform 248
5.10.2 Synchronous inductance coefficients 252
5.10.3 Direct calculation of synchronous inductance 253
5.10.4 Differential leakage inductance 258
5.10.5 Static measurement again 260
5.11 Inductance from finite-element calculations 262
5.12 Magnetization curves — beyond inductance 263
5.12.1 Magnetization curves in dq-axes 266
5.13 Saturation in the dq-axis model 267
5.14 Demagnetization 268
6 SQUAREWAVE DRIVE 273
Introduction 273
6.1 Three-phase bipolar drives 274
6.1.1 Waveforms and commutation sequences 274
6.1.2 Current regulation 279
6.1.3 Commutation 282
6.1.4 3-phase squarewave control strategies 286
6.1.5 Accumulations for mean and RMS currents 288
6.1.6 Selection of appropriate switching strategy 289xviii Contents
6.2 Transient analysis of 3-phase drives 291
6.2.0.1 Wye connection 293
6.2.0.2 Delta connection 296
6.2.0.3 Regeneration (over-running); no-load speed 301
6.2.0.4 Phase advance 304
6.2.0.5 Dwell control 306
6.2.1 Salient-pole machines with squarewave drive 309
6.2.2 Back-EMF sensing 312
6.3 1- and 2-phase unipolar drives 315
6.4 Controller architecture 321
7 SINEWAVE DRIVE 325
Introduction 325
7.1 The phasor diagram — motor operation 327
7.1.1 Torque angle curves 332
7.1.2 The voltage locus diagram 336
7.1.3 The circle and ellipse diagrams 338
7.1.4 Calculation of the torque speed characteristic 349
7.1.5 The synchronous reluctance motor 361
7.1.6 Summary — calculated characteristics 367
7.2 Electronic control 368
7.2.1 The need for current regulation 369
7.2.2 Historical development 371
7.2.3 Overview of controllers 373
7.2.4 Switching representation by voltage vectors 374
7.2.5 Six-step 375
7.2.6 Hysteresis-band current regulator 377
7.2.7 dq_W_CR 381
7.2.8 Sine/triangle ramp comparison 383
7.2.9 Voltage PWM (sine/triangle) 385
7.2.10 The synchronous regulator 389
7.2.11 Space-vector controller 391
7.2.12 Direct torque control (DTC) 396
7.2.13 Summary of voltage capabilities 404Contents
8 kT AND kE, AND FICURES-OF-MERIT
8.1 Introduction
8.2 kT & kE of squarewave and sinewave motor/drives
8.2.1 DC commutator motor and drive
8.2.2 3-phase squarewave motor and drive
8.2.3 3-phase sinewave motor and drive
8.2.4 3-phase sinewave motor with squarewave drive
8.2.5 3-phase squarewave motor with sinewave drive
8.2.6 3-phase squarewave & sinewave systems compared
8.2.7 Example calculations (3-phase)
8.2.8 2-phase squarewave motor and drive
8.2.9 2-phase sinewave motor and drive
8.2.10 2-phase sinewave motor with squarewave drive
8.2.11 2-phase squarewave motor with sinewave drive
8.2.12 2-phase squarewave & sinewave systems compared
8.3 Figures of merit
8.3.1 kT and kE
8.3.2 Efficiency and power factor
8.3.3 Torque Inertia ratio
8.3.4 Power rate
8.3.5 Speed rate and mechanical time-constant
8.3.6 Motor constant
8.4 The brushless PM motor in control systems
8.4.1 Classical transfer function betw-een voltage & speed
8.4.2 Brushless DC motor model including inductance
8.4.3 Closed-loop feedback system
8.4.4 Response of generic second-order system
8.4.5 Dynamic braking
xix
405
405
407
407
411
415
417
419
422
424
426
428
430
432
435
436
436
436
437
437
439
440
442
443
445
446
448
449xx Contents
9 GENERATING 451
9.1 Introduction 451
9.2 Configurations and loads 454
9.2.1 No-load (open-circuit) 455
9.2.2 Steady-state short-circuit 456
9.2.3 Passive impedance load 457
9.2.4 Voltage regulation curves 459
9.2.5 Connection to an infinite bus 462
9.2.6 Diode rectifier load 464
9.2.7 Active rectification 467
9.3 Short-circuit faults 468
9.3.1 Classical analysis 468
9.3.2 Transient Magnetic Field by Fourier Transform 472
10 MULTIPLE-PHASE MACHINES 475
Introduction 475
10.1 Polyphase machines 475
10.2 Multiplex windings 478
10.2.1 Reasons for using multiplex windings 479
10.2.2 Fault-tolerant machines 480
10.3 Analysis of multiplex windings 481
10.3.1 Balance 484
10.4 Matrix analysis of the inductances 485
10.5 Torque 491
10.6 Steady-state operation : phasor diagram 493
10.7 Solution method — transient 495
10.8 Finite-element analysis 496Contents xxi
1 1 LINE-START MOTORS 497
11.1 Introduction 497
11.2 History 500
11.3 Analysis of polyphase line-start motors 503
11.3.1 Steady state 503
11.3.2 Asynchronous operation and starting 506
11.3.3 Analysis of synchronization 510
1 1.4 Analysis of single-phase line-start motors 517
11.4.1 Steady state: no rotor cage 517
11.4.2 Symmetrical components 519
11.4.3 Asynchronous and starting performance 537
11.5 Advanced topics 542
11.5.1 Winding harmonics 542
11.5.2 Bar-pair-by-bar-pair model of the rotor cage 543
11.5.3 Connection circuits 550
12 LOSSES and COOLING 553
12.1 Introduction 553
12.2 Joule losses in stator conductors 554
12.3 Core losses 555
12.3.1 The nature of core losses 555
12.3.2 Core loss properties of practical materials 556
12.3.3 Calculation of core losses 559
12.4 Rotor eddy-current losses 561
12.4.1 Causes of rotor loss 561
12.4.1.1 Loss mechanisms in the magnets themselves 563
12.4.1.2 Resistance- or inductance-limited eddy-currents? 564
12.4. 1.3 Hysteresis loss in magnets 566
12.4.2 Harmonic losses in surface-magnet machines 568
12.4.2.1 Solution of the Complex Diffusion Equation 570xxii Contents
12.4.2.2 Exterior-rotor machine; 2-region model 574
12.4.2.3 Evaluation of the Exciting Harmonic Current Sheets 580
12.4.2.4 Balanced operation of 3-phase machines 586
12.4.2.5 Unbalanced operation of 3-phase machines 589
12.4.3 Segmented magnets and finite-length effects 602
12.4.3.1 Circumferential segmentation 604
12.4.3.2 Simplified analysis of double segmentation 610
12.4.3.3 End-effect; segmentation in the axial direction 611
12.4.3.4 Russell and Norsworthy's method 616
12.4.3.5 Alternative analysis of segmented magnets 618
12.4.4 Slot ripple 620
12.4.4.1 Flux-dip-sweeping analysis of losses in thin can 624
12.4.4.2 Rotor can losses 626
12.4.5 Harmonic losses in the IPM 628
12.4.5.1 Losses caused by time-harmonics in the current 628
12.4.5.2 Losses caused by flux-pulsations (slotting! 629
12.4.6 Subtransient inductance and time-constant 631
12.4.6.1 Effect of segmentation on subtransient reactance 635
12.4.6.2 Coupling coefficient of the IPM 638
12.4.6.3 Rotor time-constant 642
12.4.7 Finite-element calculation of losses 644
12.5 Windage, friction and bearing losses 647
12.6 Thermal analysis and cooling 648
12.6.1 The need for cooling 648
12.6.2 Cooling and efficiency 649
12.6.3 Responsibility for temperature rise 650
12.6.4 Heat removal 650
12.6.5 Detailed analysis of cooling 652
12.6.5.1 Conduction 652
12.6.5.2 Radiation 653
12.6.5.3 Convection 654
12.6.5.4 Some rules of thumb 655
12.6.5.5 Internal temperature distribution 656
12.6.5.6 Thermal equivalent circuit 657
12.6.5.7 Some useful tables 658
12.6.6 Intermittentoperation 660Contents xxiii
13 TESTING 667
13.1 Introduction 667
13.2 Objectives of testing 667
13.3 Basic tests and measurements 668
13.3.1 Inertia 668
13.4 Resistance 669
13.5 EMF Testing 670
13.6 Generator load testing 671
13.7 Motor load testing 672
13.8 Torque Testing 672
13.8.1 Torque constant kT 672
13.8.2 Cogging torque 673
13.8.3 On-line estimation of torque using the i-psi loop 674
13.9 Thermal Testing 675
13.9.1 Thermal equivalent-circuit parameters 675
13.10 Inductance Testing 676
14 APPENDIX 681
14.1 Frequently asked questions 681
14.1.1 Machine Design Questions 681
14.1.1.1 How do 1 decide the shape* and size of the machine'.’ 681
14.1.1.2 How do I choose the number of slots and poles? 682
14.1.1.3 How do I design the stator teethand slots? 682
14.1.1.4 How do I decide the number of turns? 684
14.1.1.5 How do I decide the type of stator winding? 685
14.1.1.6 How can I gel a fractional number of turns coil? 685
14.1.1.7 How can I reduce the wire size? 685
14.1.1.8 How can I reduce the inductance? 686
14.1.1.9 How can I increase the inductance? 686
1 4. 1. 1.10 How do 1choose Iwtween SPM and IPM? 68614.1.1.11 How do I choose between exterior or interior rotor? 688
14.1.1.12 When should I consider an axial-flux machine? 688
14.1.1.13 How do I decide the rotor geometry? 689
14.1.1.14 How can I reduce the inertia? 691
14.1.1.15 How can I improve the torque linearity? 692
14.1.1.16 How can I reduce torque ripple? 692
14.1.1.17 How do I design a PM synchronous generator? 692
14.1.1.18 How do I test a PM synchronous machine? 692
14.1.1.19 Why isn't my measured kE equal to kT? 692
14.1.1.20 How do I calculate the machine temperature? 692
14 . 1.1.21 What are the main effects of temperature? 693
14.1.1.22 How can I prevent demagnetization? 694
14.1.1.23 How can I reduce the noise level? 695
14.1.1.24 How can I reduce the motor cost? 695
14.1.1.25 How about EMF ripple? 696
14.1.1.26 How about a sine-EMF motor with squarewave drive? 696
14.1.2 Performance and Control Questions 697
14.1.2.1 How can I increase efficiency? 697
14.1.2.2 How can I increase power-factor? 698
14.1.2.3 How can I get smooth rotation at low speed? 698
14.1.2.4 How can I make the motor go faster? 699
14.1.2.5 How can I get a more sinusoidal EMF waveform? 700
14.1.2.6 How can I get a more sinusoidal current waveform? 700
14.1.2.7 How do I avoid first-turn insulation failure? 700
14.1.2.8 How do I avoid bearing currents? 702
14.1.2.9 What causes machines to fail? 702
14.2 Saliency 703
14.3 Half turns
14.4 Series and parallel inductances 709
14.5 Gearing
14.6 Units of inertia
14.7 Calculation of inertia
Symbols. Abbreviations, and Explanatory Notes
u 737
Bibliography
755
IndexINDEX
Index 755
1.5 slot* pole ..... &,86. |35 136 685
Croft 1924
136
1- and 2-phasc unipolar drives 315
12-10 motor
alternative windings 124
1*5 slot& pole 138
Abandon inductance!
214
ABB 502
AC resistance 554
and deep slots 683
and stranded conductors 144
example 150
practical considerations 151
proximity effect 102, 143
redistribution of current in a slot 146
Roebel transposition 102
AC synchronous
see Brushless AC 28
Acceleration of pure inertia load 716
Accumulations for mean and RMS currents 288
Active rectification 467
ADC (analog digital converted 323
Adhesives 156
Adkins B 468.500
Airgap
tapered 316
Airgap fiux distribution 157, 164
Airgap flux-density 161
Airgap inductance 215
calculation examples 217
general case 221
mutual between phases 217
Airgap length 92.115
182, 252, 257. 622
Ampere-conductor distribution .... 18. 19. 69. 77. 82. 169. 239. 250. 255. 476. 482. 510.
107
116
226
and Carter's coefficient
and cogging
and EMF waveform
and inductance
effective (synchronous inductance! .. .
relative to magnet length
88.89
108.686
238
70, 190. 309. 329, 335. 347. 367. 492. 501
190.332.335
501. 503. 504. 514. 534
451.453.455.501
208
695
.. 256
...93
Airgap shear stress
Airgap winding
inductance
Alignment torque
and reluctance torque . . . .
in line-start motor
Alnico
Alstom high-speed train (AGVl
Aluminium conductors756 Design of Brushless Permanent-Magnet Machines
and six-step
balanced operation
in squarewave motor
rotating
sinewave motor
space harmonics
AO Smith
APPLICATIONS
aerospace
checklist of requirements
for brushless permanent-magnet machines
general-purpose
high torque
high-precision motion-control
high-speed
high-volume
light-duty fan
low-powered fans or blowers
of permanent-magnet generators
single-phase line-start
with intermittent duty
Arc magnets
effective dimensions
Ar^lik Turkey
Armadillo < Panasonic!
525, 528, 580, 582-584, 601, 635
375
586
273
2. 18. 371
325
561, 562, 568, 580, 629
53.498
25
97.649
66
25
688
82
241
682
97
71
316
451
503
660
170.687
93
56.64
see “roll-up stator” 57
Armature reaction . 77, 162, 168, 178, 192, 203, 212, 213, 253. 256, 268-271, 346. 397,
561, 677
Armature time-constant 469-472
Asynchronous operation and starting
of line-start motor 506
of single-phase line-start motor 537
Auto-commutated
see self-commutated 699
Auto-synchronous 2
see self-commutated 699
Automatic winding machinery 36, 103
Auxiliary winding 519-522, 526, 527, 532-534. 536, 539, 540, 550, 712
«”8 520
bifilar wound 712
Average torque 157, 185. 186, 188, 190, 197, 200, 520
Axial-llux machines 37
configurations of 41
stator coils 37
when to consider 333
Back iron
see yoke
Back-EM F sensing
Harms H and Erdman D . . . .
Balanced operation
and multiple-phase machines
96
69.312
314
21, 110, 188, 198, 596, 629, 705
475Index 757
and ripple-free torque 16, 192
and synchronous inductance 243
current waveforms 17
forward and backward components 76
i-psi loop 199
of 2-phase machines 74, 188
of 3-phase machines 74, 188, 586
of line-start motor 503
rotor loss 561
short-circuit 244
Balanced winding 74, 76, 84, 110, 127, 245
and parallel paths 151, 152
equivalent in single-phase line-start motor 520
multi-phase 476, 484, 485
necessary conditions 137
slot-numbers divisible by 3 134
Baldor Advanced Technology 51, 55
Base impedance 343
Base interval 288, 289, 295, 296, 300, 301, 308, 309, 312
Base speed 12. 69. 213, 282
for normalization 351
see corner speed 339, 352
Bearing currents 702
Bearing loss 647.648
Bernard Hague 169
Bessel functions 572
BH characteristic
importance 98
magnet 94. 162
steel 98, 158, 555
Bifilar winding 71,315-317,319.320.711.712
Bifurcated teeth
see dummy slots 108
Binder A
fractional-slot winding 131
Binns KJ 502
Block diagram
current control 369
DTC
FC-IV flexible controller system 323
Lqjoie-Mazenc 1-gamma 372
of field-oriented dq controller 372.373
Blondel 248.331
BLV waveform method
EMF calculation 181
Boules N 169
Bracing bridges l67- 503
Braking 15.24.66.449
Braking torque . _
in line-start motor 50‘
Bridge
for inductance measurement .. 677.678758 Design oe Brushless Permanent-Magnet Machines
inverter circuit; 3-phase brushless DC
inverter circuit; 3-phase delta
inverter circuit; 3-phase wye
inverter circuit; back-EMF sensing . . .
inverter circuit; H-bridge
inverter circuits: 1, 2 and 3 phases . . .
8
276,297
275. 279. 285. 292, 299, 383
312
315
80
Bridge
saturable 160, 167, 168, 254-256, 268, 270, 503, 544, 546. 639. 689
Brown Boveri 371.502
Brushless AC
also known as PM AC synchronous 2, 28
basic operation 16, 327, 368
control 325
Brushless DC
and brushless AC (distinction between) 2, 28
control 273
Brushless DC motor 1
basic operation 5
control-system model including inductance 445
EMF waveform 7
operating waveforms 6
Brushless motor
as a synchronous machine 1
definition 1
Brushless permanent-magnet machines
applications 25
Brushless PM motor
in control systems 442
Building current 283
Bumby JR 241
C 120 QI 287
C60Q1 286,307
dwell control 308
C60Q6 286
dwell control 308
Cable length 700
Cahill and Adkins 500
Calculation of inertia 721
Carbon fibre 26, 49, 156, 690
Carrier frequency 383, 385
Carterscoefficient 182, 215, 220, 252, 257. 259, 545. 620. 622, 638
approximate formula 216
CEM 502
Centrifugal stress
in retaining sleeve 155
Ceramic bearings 59 702
Ceramic magnet
t 212. 659 688
Ceramic shaft
45
Chart of machine configurations 28
Checklist of application requirements gg
('hopping
and back-EMF sensing 314Index 759
and PWM losses 24
and torque ripple 24
current regulation 67. 198. 274, 279-289, 292, 294, 297. 301. 306-309
duty-cycle 280
in bifilar circuit 320
in squarewave drive 279
sinewave controllers 373
Chopping diode 289
Chopping frequency
and inductance 213, 284
to minimize current ripple 69
Chopping transistor 282-284.286,289.292.294.297.301.308
Circle and ellipse diagrams 338
Circle diagram
nonsalient-pole motor 340
oversized inverter 345
Circle tracking 394
Circuit
inverter : see Bridge; inverter circuit 8
see Equivalent circuit 19
Circuit-breaker 213
Circulating currents 143. 145
Circulator pump 45
Classification of machines 27
Clearance gap
and equivalent magnet I65
Closed slots 229
Closed-loop feedback system 446
Coating
of metallic magnets 94
Coenergy 185
Cogging 24.698
and integral slotiVpole
and skew 1°7
as a reluctance torque 19“
calculation *07
frequency 134- 137
minimization of ,07
Cogging frequency- 108. KM. 135. 137
Cogging torque
measurement
not included in i-i|> loop calculation
Cogging-torque reduction
and closed slots
large airgap
magnetic slot wedges
other methods
skew
slotless stator
small slot-openings
Coil
chordcd
673
200
683
107
682
108
108
108
107
110760 Design oe Brushless Permanent-Magnet Machines
definition 1,0
short-pitched HO
Coil List >25
Coil span 110, III. 116. 118-120, 122, 123, 125, 126, 129, 130. 136, 184
and airgap inductance 222
and End-winding leakage inductance 233
and Hague's method 170
in concentric winding 113
in squarewave motor >80
lowest possible 0-5 84
of rotor bar-pair 544
of slotless winding 238.239
Table 86
Coil Winding Exhibition 683
Coil-shooting 104
Coil-sides per slot 105
Coil-span table
and slots/pole 86
Coils per pole Ill
Coilside 110
Common-mode voltage 702
Communication protocols 66
(Commutating diode 289
Commutating inductance 464
Commutating transistor 289
Commutation 2. 4. 273, 282
in de commutator motor 4
overcurrents during 289
Commutation frequency 287
Commutation interval 273
Comparator 370
Complex diffusion equation (eddy-currents) 570
(Compressor 648
Concentrated winding 67, 68, 133, 134, 137. 138, 180, 217, 242, 273. 682
high winding factor 86, 133, 138
Concentric winding 104.111-113.685
winding factor 113
(Condensation
and dielectric strength
Conductive grease
Conductive shield
(Conductor
702
702
698
AC resistance
aluminium
and end-turn inductance .
current distribution in . . .
current -density
definition
fretting
go and return
hollow
inductance of hunched .. .
143
695
686
146
697
110
104
110, 221,232
90
218Index 761
...14, 28,66,89. 90. 437. 439. 499. 662. 692. 715
369
348
363
325
286
442
66
321
. 97
282
339
701
. 94
634
320
position in dot
rectangular
sinusoidal distribution
stranded
temperature
temperature hot-spot .
total area
varnishing
Conductor distribution
see Ampere-conductor distribution; see Winding
Constant-power operation
speed range
Constant-power speed-range
seeSpeed range at constant power
Constant-speed operat ion .
Contact resistance
Continuous operation
Control blockdiagram
see Block diagram
Control chart
synchronous reluctance motor
Control strategies
3-phase sinewave
3-phase squarewave
Control system model
Control Techniques Drives and Controls Handbook
... 68
...15
.. 653
18
70. 213. 339
343
226,686
100, 102, 109. 685
130
104, 105. 110. 139, 144-146, 151, 152,685,712
23
105
72
104
23. 87-93. 648-658. 675. 681. 690. 691
649
652
654
653
648
529. 639.641.642
235
632. 635. 637, 638
86.135
142
24, 90. 97, 553-559.657, 672. 697
555
555
559
Controller architecture
Cooling
and efficiency
Conduction
Convection
Radiation
thermal analysis and cooling
Copper
resistivity
Core losses
eddy-current component
hysteresis component
simple method for squarewave motors
Core plate
see Laminations
Corner point
Corner speed
Corona inception voltage
Corrosion
Coupling coefficient
between bifiiar windings
d-axis
in end-turns
subtransient
Croft762 Design of Brushless Permanent Magnet Machines
Cros J 133
Cross-magnetizing current
Cross-saturation
Cuffed slot-liner 9$
Current
reference or set-point . . 281-284, 296, 300, 304, 305, 308, 370, 372, 379,
Current error
Current regulation
need for
SINEWAVE DRIVE 325
SQUAREWAVE DRIVE
torque control
Current ripple
and inductance
inductance
Current sensor
single
Current waveform
how to make sinusoidal
Current-density 87. 89, 90. 143. 144. 227, 652. 655
typical values
Current-density (eddy-currents) 565, 570, 572, 604-612, 616, 625,
Current-limit circle
Current-limited maximum torque
Custom laminations
CWIEME Exhibition
Cycle hub dynamo
St urmey-Archer DYNOHUB
Cycloconverter
d-axis
magnet flux defines the d-axis
d-axis synchronous inductance
Damping curves
Damping ratio
w’ motor 1, 9, 11, 13, 67, 179. 553. 655. 682,
idcal 405, 407, 408, 411-415. 422. 423,
Definition
of brushless motor or generator
Degrees C per watt
delta
for maximum torque
Delta connection 9. 17. 21. 72. 75, 116. 117, 122. 180, 181, 186^ 251, 274. 289.
. r 293.317,413.
analysis of squarewave drive 296-301 309
inductance ’
inverter circuit
reconnection from Wye
waveforms isquarewave drive)
wye/ Delta combination
zero-sequence
Demagnetization . 24. 93. 162. 166. 268-270. 349. 351. 439. 455, 471. 499. 501. 648,Index 763
at higher temperature
how to prevent
in IPM
Deng F
Design procedure
di/dt
and inductance
Dialogue
between motor engineer and control engineer
Dielectric strength and condensation
Differential inductance 131, 134, 214, 225, 226, 250. 258, 482, 487, 490, 634,
Diode rectifier
Direct axis •
Direct calculation of synchronous inductance
Direct cooling
Direct torque control (DTC)
Direct-drive motor • •
Distribution factor ''
harmonic 122
of concentric winding
spread factor
Double-layer winding
Doubly-fed machines
reference-frame diagram
salient-pole machines
dq-axis inductances from Park's transform
dq-axis model
dq_W CR
and DTC
Drive
3-phase bridge inverter circuit
sinewave
squarewave
Drive circuit
1-phase
2-phase
3-phase
DSP (digital signal processor) ' ' 1
DTC
Dummy slots (bifurcated teeth )
Duplex winding
phasor diagram
Duty-cycle
and peak mean and RMScurrents
chopping
precision
Dwell control
Dynamic braking
Eccentricity764 Design of Brushless Permanent-Magnet Machines
Eddy-current core loss 556
and lamination thickness 556
Eddy-current losses 94
and segmented magnets 602
in rotor 561
see AC resistance 143
Eddy-currents
inductance-limited 564
resistance-limited 563
Effective airgap 252, 622, 641
Efficiency ... 23. 92, 97. 113. 117, 317, 320, 366. 422. 423, 437, 453. 463, 499. 503. 550,
551, 558, 648, 656, 671, 687, 697
and cooling 650
and power factor 436
and watts loss * 650
as a figure of merit 436
effect of temperature 693
gearbox 715
how to increase 697
Electric loading 87, 681
Electro-discharge machining (wire-erosion) 97
Electronic control of Sinewave drive 368
Ellipse diagram 22, 326, 338
1PM 348
synchronous reluctance motor 363
178
178
181
7
179
115
19,181
670
341
131,700
108. 131. 456. 696
88
183
6. 7, 157. 179. 187. 188. 277. 278
7,277.278
201.700
700
EMF
basic concept
BLV calculation
brushless DC
by formula
flat-top. for squarewave drive ....
fundamental EMF phase Eql
measurement
per-unit
sinusoidal
slot ripple (permeance harmonics)
standard equation for sinewaves .
toothflux calculation
waveform
waveform, squarewave motor ....
waveform, with harmonics
waveform; how to make sinusoidal
EMF constant kE io, j67 j79
measurement 456.670
of sinewave motor
Igj
of squarewave motor 179.180
see Chapter8
Encoder
End turns
see End-windings
405
323.371Index 765
End-windings
in 2-pole machines 682
laced 62, 101, 104
leakage inductance 214, 233-237
leakage inductance < Lawrenson's method ) 241
"blocking" or "forming" 109
“knuckle" 109
Energy conversion equation
ideal 7. 185, 187, 188, 407, 411-421, 427-433
Energy-conversion loop
see i-<|i loop 197
Epstein frame 556
Equality of kT and kE 692
Equivalent circuit
diode rectifier 464
electrical 10, 190, 192, 198-202, 209, 232, 243, 408, 494
generator 457
line-start motor 517, 518
magnetic 157-159, 164, 168, 173
series/parallel inductances 711,712
subtransient 631
thermal 657, 658, 661, 675
Equivalent sine-distributed windings 242
Erland Persson 651
Euler 266
Ewing 565
Exterior-rotor machine 35, 688
characteristics 35
cooling 37
exterior-rotor 3
in pan-and-tilt mechanism 60
inertia 36
rotor cup 35
rotor yoke 96
split ratio
stator coils
344
48
External (series) inductance
and flux-weakening
Fl dynamometer, MTSSystems . ..
Failure
premature
Fan (cooling)
Fan-drive applications
Fanuc
Faradayslaw
Faulhaber
Fault-tolerant machines
FC-IV Controller
Feedback
Fibre-optic gate drive connections
Field AB
Field-oriented dq control
702
89. 90, 553, 654-656
28,71,688
28
210
59
100,480
321
445
323
146
372.373766 Design of Brushless Permanent-Magnet Machines
Fieldbus
Figures of merit
Efficiency and power factor
kT and kE
Mechanical time-constant .
Motor Constant
Power rate
Speed rate
Torque Inertia ratio
Finite-element method
and inductance . . . .
53, 157. 158, 164. 168. 174-178.
200.
267. 268.
calculation of cogging torque
calculation of i-t|» loop • • •
calculation of i-i|i loop from known current waveform
calculation of i-4r loop with only a few points
calculation of saturated synchronous inductance . ...
calculation of slot-leakage inductance • • •
calculation of torque from i-ip loop with known current waveform . . 2UU
calculation of yoke flux distribution
does not protect the unwary
flux-plot
good with toothflux method
identification of leakage flux
magnet flux distribution
mesh
not good with BLV method S
requires foreknowledge of current waveform
torque calculation from onesolution
uncertainties with inductance calculation
used to calculate T-gamma curves
using fiux-linkage (abandon inductance!) 214
First-order system (control-system model)
First-turn insulation failure
Flux
airgap
alternating polarity
and Magnet overhang
and yoke dimensions ••••
calculation of magnet flux
concentration
confined to the stator teeth
distribution of airgap flux
effect of airgap on waveshape
effect of clearance gap
effect of phase advance
effect of temperature
forward and backward rotating components
fringing and pole-to-pole leakage 113.
fundamental component
fundamental magnet flux/pole
fundamental space-harmonic
harmonic components of armature reactionIndex 767
in bracing bridges
in shaft
in stator yoke
in teeth
toy01®
160
magnet flux calculation 157
magnet flux defines the d-axis 5
methods for calculating 157
nonlinear
192
of armature reaction
of Halbach magnet 131
of rotating magnet 19 135
rectangular distribution U3
remanent jgg
rotating 75
sinusoidal distribution 79, 88
space-harmonic 71
through the magnet 158
torque equals current x (lux 87. 88
variation due to slotting 106.108
Flux times turns
(as an approximate definition of flux-linkage) 5. 211
and inductance 211
Flux-concentration
in exterior-rotor machine 36
in IPM 34
in spoke-type machine 28
reduction of permeance coefficient 161
Flux-dip-sweeping 624
Robinson Rowe and Donelan 569
Russell and Norsworthy 569
Flux-linkage
and Faraday’s law 210
and inductance 209. 210
and magnetization curves 263-267
calculation using line-integral of vector potential 262
demagnetizing component 328
measurement 210
rate of change equals EMF 178. 264
real-time measurement using FC-IV controller 674
waveform 5-9. 116. 178. 200. 203. 206. 207
Flux-plot
open-circuit 106. 183
Flux-spreading
in rotor cup of exterior-rotor motor 36. 96
Flux-weakening .. 69. 70. 92. 134. 213. 304. 326-328. 337. 34 1. 346. 349. 353-355. 358-
360, 369. 383. 686. 699
and external inductance 344
and inductance 33
extreme case 328
inverter size required 345768 Design of BrushlessPermanent-Magnet Machines
648
653
93. 96. 116. 117, 158. 160. 179, 638. 641. 689
. 87, 164, 176, 181, 423, 526, 546, 547
216,630
500
90
100. 102, 105, 109, 111, 682, 685, 701
75,518
23,24
472
323
685,706
67.68,84-86,107,108,682
118
Flux pole
fundamental
of armature reaction
FongW
Form factor
Form-wound coils
Forward and backward rotating Fields
Four quadrants of operation
Fourier Transform
FPGA < field-programmable gate array)
Fractional number of turns/coil
Fractional slots/pole
Fractional-slot windings
Frame
allowable temperature
contact thermal resistance .
cooling 90- 6^2, 657
finned 656
short-circuited current paths in 679
temperature in 4-parameter model 666
temperature measurement 650
thermal capacity 658
totally enclosed aluminium 30
Freewheel circuit 279,291,319,391
Freewheel diodes 274, 301, 304, 317, 319
Freewheeling current 279, 283, 285. 288, 291-297, 306, 308, 312, 382
Frequency
and eddy-current loss ... 104, 555, 563-566, 575, 580, 583-587, 590, 599, 600,
629. 630. 634. 640
and AC resistance 104, 143, 144, 151
and core-loss 553, 554, 556-558
and pole-pairs 1
and speed 1
base 361
carrier 383,385
cogging 108,134,135,137
commutation 287
complex 443, 529, 530, 548, 562, 628
corner 339
fundamental . . 1, 2, 4, 82, 88, 110, 180, 243, 269, 325, 339, 340, 350, 361, 366,
369, 385. 386, 456, 457, 464, 499, 514, 542, 601, 607, 699
magnetic 82,681,697
maximum possible switching 382
negative-sequence 561.587,596
Nyquist 473
of harmonic variation of inductance 191, 249, 250, 315
of supply 66
of torsional oscillation (inertia measurement) 669
pulsating torque 187.188.517
sampling 381.387.401
S,'P 528
slot-passing 108. 553, 561, 563, 621Index 769
swing 472
switching in DTC 402
switching or chopping 22. 69. 213. 279-281. 284. 323. 368. 373. 377-380, 382,
383, 387, 402. 553. 554. 677. 686. 700. 70!
undamped natural 448
Frequency-dependent synchronous inductance 543. 548. 562. 628, 632-634, 647
Frequency-response test 543,562
Fretting
Frozen rotor ....
Full-pitch coil . ..
Full-pitch winding
Full-ring magnet .
GAMBICA/REMA
696
696
685
700
700
698
692
697
0270
686
699
693
686
691
695
695
685
692
702
700
. 692
. 688
. 686
. 682
. 684
. 689
. 681
. 685
. 692
Frequently asked questions:
How about a sine-EMF motor with squarewave drive?
How about EMF ripple?
How can I get a fractional number of turnscoil?
How can I get a more sinusoidal current waveform?
How can I get a more sinusoidal EMF waveform?
How can I get smooth rotation at low speed?
How can 1 improve the torque linearity?
How can I increase efficiency?
How can I increase power-factor?
How can I increase the inductance?
How can I make the motor go faster?
How can I prevent demagnetization?
How can I reduce the inductance?
How can 1 reduce the inertia?
How can I reduce the motor cost?
How can I reduce the noise level?
How can I reduce the wire size?
How can I reduce torque ripple?
How do I avoid bearing currents?
How do 1 avoid first-turn insulation failure?
How do 1 calculate the machine temperature?
How do I choose between exterior or interior rotor?
How do 1 choose between SPM and IPM? .
How do I choose the number of slots and poles?
How do1decide the number of turns?
How do I decide the rotor geometry? -
How do I decide the shape and size of the machine’
How do I decide the type of stator winding'?
How do I design a PM synchronous generator’
How do I design the stator teeth and slots?
How do I test a PM synchronous machine?
What are the main effects of temperature?
What causes machines to fail?
When should I consider an axial-fiux machine’
Why isn't my measured kE equal to kT?
...682
... 692
... 693
... 702
... 688
... 692
104. 702
.... 63
116, 128. 179, 180. 215. 217. 220. 222
115, 116. 130
107.607
701
gamma
optimum phase advance
Gate drives
333
323770
GE
Design of Brushless Permanent-Magnet Machines
back-EMF sensing scheme 314
Gearing ?I4
GENERATING
see Permanent-magnet generator 451
Generic second-order system 448
Gieras 41,688
( Jorges diagram ("star of phasors") 125,130,591
Gorges effect
dip in speed/ torque characteristic 542
Gramme ring 37
Greens Mower
John Deere 50
Grover E 234
Grundfos 45
Hague B 169
Hague’s method
and inductance 225
Hague-Boules method 172
Hairpin coils 683
Halbach magnet 59
and nonmagnetic rotor yoke 3, 96
sinusoidal EMF 131, 689. 700
Half turns 706
Hall-effect sensor 71,100,323
Hancock 702
Hand tools 61
Hanrahan and Toffolo 451
Harmonic current-sheet 580
Harmonic leakage (differential) inductance . 131. 134, 214, 225, 226. 258, 482, 487, 490.
Harmonic losses
in surface-magnet machines
in the IPM
see AC resistance
Harmonic pole-pitch
Harmonic wavelength
Harmonic winding factor
Harmonics
and back-EMF sensing
and i-4» loop
and imbalance
and kE
and rotor losses
and slots/'pole
as cause of failure
axial
current-sheet
effect on current-density ...
effect on torque
elimination by pitch-factor .
even
686
82,96.467,561,562.568-647
568
628
143
603
609
77. 88. 108. 122. 129-131. 172. 240. 242. 267, 700
16,66
314
192
595.599
413
580-592
82.697
702
603
169, 171, 172
90
190. 192. 198-202
129,278
315Index 771
fundamental component 113. 12.5. 164. 175. 225. 242. 250, 25ft
ignoring higher-order 131
in airgap inductance 217,225, 259, 261
in current waveform 70
in current waveform examples 376, 378,382, 384. 388, 390
in current waveform examples (squarewave drive) . . 290. 295. 303, 305. 307.
308.311
>n KME 93. 108, 113. 131, 315, 387. 456. 561, 620. 621. 689, 700
in flux-density waveform 558
in line-start motor 542. 543
in power measurement 671,672
in rotor llux 131
in squarewave current (effect on RMS) 419, 421
in squarewave motors 79, 116
inductance components not available from finite-element method 263
inverter 386,394.419
one of the nasty things that goes on in machines 326
permeance/slot*modulation 108, 131,456,561
series representation of magnetization 169.171.172.225
slot-order 700
space 131.217.250
space harmonics used to start single-phase motor 71
third harmonic and zero-sequence 599. 600, 700
third-harmonic injection 387. 404
triple-n 116. 117. 278. 593. 599, 600
variation of inductance with rotor position . 191. 249. 251. 259. 261. 314. 489.
490
Head-scratching
caused by failure to measure things 668
Heat removal 650
Heat transfer
see Cooling 648
Helical windings 241
Heller B and Hamata V 628
Hermetic compressors 648
Hexagon tracking 394
and Third-harmonic injection 387
High-speed machines 92. 96. 105. 151. 156. 366, 554. 620. 647, 682. 690
Historical development of sinewave drive
Hitachi 502
26
Holes (to reduce inertia) 691
Holtz 374,394
Space-vector controller 391
Honeywell 43
Honsinger 499,51X1.507
Hoop stress
in retaining sleeve
569
Hughes A
Hybrid vehicles 451
Hysteresis loss 555772 Design of Brushless Permanent-Magnet Machines
197
43
700
561
593
100
26
209
214
IEC
IGBT transistors
Imbalance
single-parameter
Impedance protection ....
Inconel®
INDUCTANCE
abandon!
566
377
377
372
. . 192. 196
200
. . 268.496
203
. . . 200-202
. . . 203-207
. . . 197-200
206
207
Hysteresis loss in magnets
Hysteresis-band current regulator
leakage outside the hysteresis band
l-y controller
i-f loop
and cogging torque
calculation of saturated synchronous inductance . . . .
elliptical
examples
properties
theory of average torque production
torque per ampere
with six-step drive
i-psi loop
see i-i|« loop
airgap component 214,215
and airgap length 226
and ceramic or bonded NdFeB magnets 36
and closed slots 229
and current regulation 33
and current ripple 33. 213, 280
anddi dt 213
and finite-element calculations 262
and flux-linkage 210
and flux-weakening ....
and Hague's method . ..
and parallel paths
and phase shift
and power factor
and short-circuit faults .
and skew
and speed range
and switching frequency
and type of magnet ....
chopping frequency . . . .
components
definition
di/dt
differential
effect of slot shape
effect of tooth overhangs
end-turn component . . .
Faraday’s law
flux times turns
33,344
225
216
213
213
213
250
213
213
212
213
214
209
211
131. 134, 214, 225, 226. 258. 482, 487, 490, 686
231
231
214
210
211773
.. 221
131, 134. 214, 225. 226. 25«, 482. 487, 490.686
716
721
668
36
691
716
462
341
harmonic
in salient-pole machines
in torque calculations ,
incremental
link between static and dynamic calculations
magnetizing
measurement
mutual
of end-winding
of slotless (airgap) windings
per-unit
phase
position of conductors in slot
practical effects
Prescott and El-Karashi inductance bridge . ,
self
. 648
. 447
. Ill
. 45
3.688
Index
general case of airgap inductance ....
... 247
... 190
... 263
... 209
... 225
260. 676
... 210
... 233
... 238
... 212
... 214
... 230
... 213
... 677
... 210
...709
... 226
...682
... 214
... 631
... 243
...686
...686
... 212
191, 249. 251. 259. 261. 314. 489. 490
713
213
series and parallel
slot-leakage
slot-leakage and magnetic slot-wedges
slot-leakage component
subtransient
synchronous
how to increase
how to reduce
turns squared
variation with rotor position
wye and delta connections
Inductive voltage drop
Inertia
acceleration of
calculation
measurement
of exterior-rotor machine
how to reduce
units
Infinite bus
Infinite maximum speed
Insulation life
related to temperature
Integral gain compensation
Integral-slot windings
Integrated frequency converter
Interior rotor
Interior-rotor machine
split ratio
Interlocking laminations
Intermittent operation
Inverse saliency 349. 251. 505
Inverter
available current 338
oversized required for llux-weakening 345771 Design of Brushless Permanent-Magnet Machines
sinewave : Bee Chapter 7 325
squarewave :see Chapter 6 273
Inverter circuit
bridge; inverter circuit 8
Inverter-grade magnet-wire 26,701
Ionel DM 558
I PM 28.32
airgap comparable to that of an induction motor 33
and demagnetization 33
and torque linearity 33
control complexity 33
control mode diagram 348
essential features 32
multiple-layer 690
reasons to use 687
reluctance torque 32
saturation in 34
speed range 33
V-shaped magnets 53
with squarewave drive 309
Iron losses
see ('ore losses 555
Irregular slotting 131.132
Irreversible loss of magnetization 694
Isosyn motor 371, 501, 509
j
rotate phasor by 90 19
Jack A
fault-tolerant machine 100
powdered-iron core 100
prepressed windings 100
Jahns IM
373
John Deere
H
Jones bridge
see Prescott and El-Karashi inductance bridge
Jones CV
Joule losses
Kalluf
kE
... 677
... 677
143.554
...542
see EME constant kE
Keeper
Kelvin functions
Knee point
157
455
572
on magnet demagnetization curve
Koch Th
kT
161,693. 694
131
sec Torque constant kT
kT & kE 157
2-phase sinewave motor and drive
2 phase sinewave motor with squarewave drive
2 pha.M- squarewave and sinewave systems compared
2 phase squarewave motor and drive
428
430
435
426Index
2-phiw squarewave motor with sinewave drive
J-phaw sinewave motor and drive
3-phase sinewave motor with squarewave drive
; phas<. squarewave and sinewave systems compared’ .'
J-pnasesquarewave motor and drive
3-phasc squarewave motor with sinewave drive
as Figures of merit......
775
432
415
417
422
411
419
DC commutator motor and drive .. .." /
detailed analysis: see Chapter 8
Tables; 2-phase
Tables; 3-phase
when are they equal and when are they not equal?
traced end-turns
436
407
405
434
422
11. 406. 692
Lqjoie-Mazenc M
Laminations
62
.. 371.372
choice of steel
custom designs
improvements in electrical steels .
insulating coatings
insulation
punching
self-cleating
skewing
stacking
suppliers
thickness and eddy-current core loss
thin
Lammeraner and .Stall
Langhorst
l-ap winding
inductance calculation .. . .
Lapiace/Poisson equations
Laronze J
Lateral deflection and whirling
Lawrenson PJ
97
683
26
97
26
97
99
99
98
683
556
97
146.563.642,643
702
77. 78. 100, 104. 109-113, 120, 685
157.169
473, 662. 568. 569
end-winding inductance calculation
pull-in criterion
synchronous reluctance motor
Layers
in winding 77. 110 Hi l.P
LCM
least common multiple of slots and poles
Ixi
we Synchronous inductance
Ldiff
see harmonic or differential inductance ....
leakage factor
Leakage flux (in rotor bridges)
Leakage flux (pole-to-pole or 'rotor leakage") .... 113. 116. 153-160 167. 183. -1
270. 639. 689
Length/diameter ratio
Libert F776 Design of Brushless Permanent-Magnet Machines
Line-start motor
advantages
analysis of polyphase
analysis of synchronization
d starting 5
of the rotor cage
Chapter 11
connection circuits
asynchronous operation an
bar-pair-by-bar-pair model
history
magnet braking torque ..
non-orthogonal windings .
phasor diagram
pull-up torque
saliency braking torque . . .
single-phase
torque reversals
winding harmonics
Linear motor
Linear power amplifier
Linearity
from a control viewpoint . .
see Torque linearity
Liquid coolant
Litz wire
Ixiad
speed, torque characteristic
Load angle
power angle
Load-line
out-of-stator
Locked-rotor stall 13. 14, 270, 436, 439-441,
Loctite 98.
Losses
AC resistance
and cooling
and finite-length effects
and multiple phases
bearing loss
core losses
due to imbalance
due to MME Space-harmonics
due to permeance harmonics
due to time-harmonics
effect of temperature on resistance
finite-element calculation
in Segmented magnets
in the IPM rotor
in thin can
Joule (copper!
proximity effect ’
rotor eddy-current
slot ripple
507. 509, 516,
144, 151,Index 777
windage and friction
563 647
M
see Synchronous inductance
243
Lubrication '
Machine configuration
chart
variety of
Machine Design Questions
Machine temperature
How to calculate
MAGNA circulator pump
Grundfos
Magnet
alignment torque
«rc 93
effect of temperature 23
effect on inductance 212
energy product 94
ferrite 26
flux calculation 162
full-ring 107. 607
grade of 94
initial dimensioning 93
knee-point 161
knee-point and its variation with temperature 693. 694
length 93
load-line calculation 162
Neodymium-lron-Boron 26
operating point calculation 162
overhang 95
permeance coefficient calculation 162
polymer-bonded 45
profiling 689
retention 31. 153, 690
rotating 1
Samarium-Cobalt 26
segmented 93
thickness 93
width 93
Magnet braking torque 507. 509. 516, 543
Magnet flux-linkage . . 5
Magnet-wire
inverter-grade 26
Magnetic equivalent-circuit method 157, 158
Magnetic frequency’ 82.681.697
Magnetic loading B 87
Magneticslot-wedge 682
Magnetization curves 263-267
in dq-axes 266
Magnetizing fixture
with skewed poles 107778 Design < >f Brushless Permanent-Magnet Machines
Magnetizing inductance
Magnussen F
Manual winding
Maximum speed
and inductive voltage drop -
attainable with a given supply voltage
infinite *"'
of nonsalienl-pole motor ••••••
Maximum torque
Current-limited
Voltage-limited •••
Maxon
slotless motor ......
McLachlan NW
Mean rectified EMF 407'
Measurement
airgap length
cogging torque •••••
EMF
EMF constant
(lux-linkage .......
inductance 260.
inertia
mutual inductance ..........
on-line estimation of torque using the i-psi loop
resistance
synchronous inductance y.-
thermal resistance
torque
torque constant ;
Mechanical time-constant
as a Figureof merit ........
MelfiM
Merrill FW
Mhango I
Miller TJE
Rotor eddy-currents ...
MIN ASH servo-motor
Panasonic 99.
Misalignment
Miyashita ”
.
MMF distribution
see Ampere-conductor distribution
Modi- diagram
I PM control
synchronous reluctance motor . .
Modular winding
Modulation index
Morley A
Motor constant
Figure of merit
Motor load testing SI
Hill
§
§82
a
$83l
ss
2£§Index 779
Motorcycle alternator
Triumph Bonneville 57
Moulded plastic insulator 100
Mounting flange 43
MS-TECH Japan 53.63
MTS Systems Inc 48
Multi-level converter 80
Multiple phases
used to increase efficiency 475
Multiple-layer 1PM 690
MULTIPLE-PHASE MACHINES 475
Multiple-strand conductor
see Conductor; stranded 104.685
Multiplex windings 478
reasons for using 479
Mutual inductance
airgap component 217-225
and differential inductance 258
between phases ... 191. 198. 209. 214. 225, 232. 243-250. 258. 259. 265, 280.
291,313,314.319
214
210
234
316
... 529.543-548
478. 481-491.495
... 6X5,638.641
709-714
238-240
679
705
229-231
212
156
448
530
43
152
569
13
646
440
458
.... 15,443
23
... 424.425
455
... 157,455
... . 301-303
455
401
components
definition
end-winding component
in bifilar winding
in line-start rotor
in multi-phase winding
in rotor loss calculation
in series parallel connections
in slotless machine
measurement
saliency and torque-production . ..
slot-leakage component
turns-square rule modified
Mylar
Natural frequency
Natural symmetrical components
NEMA
Neutral connection
insulated
Ng K
No-load speed
and losses
and Motor Constant
and regulation
and voltage
effect of temperature
example calculation
generator on open-circuit
open-circuit condition
precise determination
No-load test
Noguchi780 Design of Brushless Permanent-Magnet Machines
Noise causes
Non-orthogonal windings
in line-start motor 520.536
Non-overlapping winding
mm* Concentrated winding 86
Non-uniqueness of reluctance torque 335
Nonsalient-pole machines 68
Number of phases
in electrical machines 75
in electrical systems 72
in inverters and rectifiers 80
multiple phase's used to increase efficiency 698
practical considerations 71
Number of poles 82, 682
Number of stator slots 82,105,682
Offset
winding 127
ohms per 1000ft 140
ohms km or ohms'1000ft 140
On-line estimation of torque using the i-psi loop 674
Open slots 100, 105
and form-wound coils 105. 682
slot-fill factor 102
Open-circuit test 456, 670
Operating point
of the magnets 157
Operation of salient-pole motor generator (IPMI 347,348
Optimization tools 681
Optimum gamma 333 347 343
Oriental Motor Co Ltd 52
planetary gearmotor 52
Output equation 37
Outside rotor
see Exterior rotor 688
Overcurrent circuit-breaker 213
Overcurrents during commutation ’ ” ” ’ 289
Overexcited generator 339
Overmodulation
3^ 3$^
Oversized inverter '345
Overview Ltd UK
Overview of controllers
Sinewave drive
Pacific Scientific
Pan-and-tilt mechanism
Overview Ltd
Panasonic Japan
Pancake coils
Parallel paths
and biHlar winding
and circulating currents ...
and Litz wire
and turns in aeries per phase JIndex 781
248
... 108
453
467
451
469
453
462
464
671
455
456
301
330
457
461
458
453
468
456
456
461
469
469
454
331
459
5(H)
289
341
212
343
343
697
154
.. 93. 161
230
sw open slots .
Park's equations
Park's transform
and inductance
105.682
195
193. 194, 247-249. 326. 485
Peak, mean and RMS currents
versus duty-cycle (squarewave)
Per-unit EMF
Per-unit inductance
Per-unit short-circuit current
Per-unit synchronous reactance
Performance and Control Questions
Peripheral velocity
Permanent-magnet generator
sign conventions
active rectification
applications
armature time-constant
asa motor with the direction of power How reversed
connected to infinite bus
diode rectifier load
load testing
no-load (open-circuit)
open-circuit test
over-running of squarewave drive
overexcited
passive impedance load
pull-out torque
regulation
self-regulating
short-circuit fault
short-circuit ratio
steady-state short-circuit
steady-state stability limit
subtransient reactance
subtransient time-constant
types of load
underexcited
voltage regulation curves
Permasyn motor
Permeance coefficient
of magnetic circuit
of slot
Permeance harmonics
and cogging torque
defining conductor current
effect on EMF constant kE ’ / ‘
effect on inductance
effect on resistance
not balanced
used to adjust wire size
used to get correct turns/coil or turns in series per phase .
Parallel-sided slots
110
180
216. 232,712
139
151
685
... 152.685
-
_782 Design of Brushless Permanent-Magnet Machines
Pitch (coin
see coil span
Pitch factor
definition
for a general winding
harmonic
and KMF ripple
and rotor losses
Phase advance
and flux-weakening
effect on torque constant
in squarewave drive
increase in torque ripple
uncontrolled rectification
Phaseseparator
Phase shift
and inductance
Phasor diagram
definition
does not apply to squarewave drive
duplex winding
flux-linkages
generating
including space phasor diagram of flux-linkages
motor operation
of split-phase line-start PM motor
86. 126
113, 122. 126. 128, 129. 134. 136
129
130
240
108.456.696
. 561. 562. 620-630
18.70
304,344
333
304
305.696
304
101
371
213
22, 203, 327, 329, 332
19
273
494
328
330
203,329
327
533
PM alignment torque
see Alignment torque 70
PM generator
see permanent-magnet generator 451
PM synchronous AC
see Brushless AC 28
PM-assisted synchronous reluctance motor 64, 364
Pole-group 111-113
Pole-pairs
and frequency 1
and speed 1
Poles
number of 82. 682
Polifibra 156
Position of the neutral 708
Powdered-metal materials 26
Power factor
and double-frequency pulsating component of power 187
and llux-weakening 358 364
and inductance 213.314
and phase advance 67
and volt -ampere requirement 213.698
us a Figure of merit 436
auxiliary capacitor as a power-factor correction capacitor 534
•xample 342
how to increaseIndex 783
importance a performance criterion 367
in line-start motor 503 534
in testing 650
internal 205
4 497,503
maximization as a control strategy 366
of generator 330,331, 459-463
variation with speed 341, 359, 365
zero-power-factor load 650
Power per volt-ampere 213
Power rate
Figure of merit 437
Premature failure 702
Prescott and El-Karashi inductance bridge . . 677
Presscd-core
see powdered-metal materials 26
Printed-circuit board 100
Prius
Toyota Prius 34
Prolibus
see Fieldbus 66
Proximity effect 102, 109, 143, 144, 150,554,646
Pull-out torque
of permanent-magnet generator 461
Pull-up torque
in line-start motor 506. 507
Punching
see Lamination 683
Punching die 683
PWM see Chopping 370
q-axis synchronous inductance
see synchronous inductance 247
q-axis web
effect on inductance 258
Quadrants of operation 24
Quadrature control 329. 353
Rabi novici R 164. 559
Radial-flux machines 30,31
Ramp comparison 383
Rasmussen KF 169
Ratio of reluctance torque to alignment torque 335
REA Magnet Wire Co USA 102
Recoil permeability
and saliency 94
generally of little significance 94
Rectangular conductors 100. 102. 109. 145.685
Rectifier 80
12- or 24-pulse 79.80
action of transistor bridge diodes in over-running 301
as load on a PM generator 2. 18. 22. 453, 454. 458, 464-467, 671
in l.qjoie-Mazenc'8 1-y controller 372784 Design of Brushless Permanent-Magnet Machines
370
Reliance Electric . 68. 190-192. 329. 332. 335. 346. 347. 350. 351, 361. 705
Reluctance torque
520
193
701
301
... 458.459
371.497.502
mean rectified
phase-controlled SCR
precision • • •
transistor inverter operating as active rectifier
waveforms
Reference current
see Set-point current
Reference-fra me t ransformations
of single-phase line-start motor
see Park's transform
Reflection of voltage wave
Regeneration
Regulation
of permanent-magnet generator
and saliency
and squarewave drive
and torque linearity
and torque ripple
cogging as a form of reluctance torque
concept undermined by saturation
in IPM
in line-start motor
in multi-phase machine
included in i-<» loop
1PM
maximizing using multiple-layer IPM
non-uniqueness
small effect due to recoil permeability
Remanence
variation with temperature
Renewable energy
Resistance
AC resistance
and copper weight
and Figures of merit
and Joule loss
and Litz wire
and locked-rotor current
and magnet braking torque
and ohms/km or ohms/1000ft
and parallel paths
and saliency braking torque
and short end-windings
and slot-fill factor
calculation of winding resistance
effect on measurement of inductance
equivalent DC impedance and commutating inductance
in armature time-constant
in complex synchronous inductance
in electrical and mechanical time-constants
407,410
... 13.372,454
456,670
453, 454, 458, 467
410
. 68-70.256.703
. . . 273.310.371
423
191, 192, 309.310
107.703
335.367
32.92.687
501-504.514.515
492
197, 198
32
689
335
94
. . . 158, 160, 161
693.694
451
12
.... 104,143-151
140
405, 406, 439, 441
554,693
144
13,14
507
140
139
507
133
101
139
677,678
464
471
632
443-445Index 785
712
556
470
104
142
140
323
26
49
155
63
561
156
153
241
28
31.68.83. 107, 607,687
increased using bifilar winding. .
load on generator
measurement
must be known in DTC controller
of eddy-current paths .
of laminations
712
457
669.670
402
604. 610. 612. 618, 619, 629, 630, 632, 644
Resistivity
of copper
temperature coefficient ...
Resolver
Retaining sleeve
carbon fibre
effect of thermal expansion
fitting
loss calculations
material
tangential or hoop stress . .
Rhombic windings
Richter
Ring magnet
Rise-time
of magnets in subtransient time-constant
of multi-strand conductor
of rotor cage in line-start motor 5l6t 524. 543. 548, 549
per-unit, and scaling laws 509
ratio formula for temperature variation 142
temperature rise by resistance 658 675
thermal:see Thermal resistance ' L ' . / . 99
variation with temperature ” 140-142, 554. 693
X'R ratio of split-phase line-start motor
. 712
Resistance thermometer
559
Resistance-limited eddy-currents 563-566, 569, 602, 603, 618, 620, 625 633 646
Resistance-start line-start motor
of voltage pulse from the inverter 700
Roebel transposition 102. 145
Roll up stator (Panasonic Armadillo) 57
Rosa and Grover 234
Rotating field
forward and backward components 75
production with two phases 75
Rotor
can loss 561. 626
diameter 87
eccentricity 137
eddy-current loss 107. 561.62b
exterior 15
inertia 668.717
interior 3, 30
interpolar axis (q-axis)
I PM
line-start 499-503
nonsalient-pole786 Deskin <» Brushless Permanent-Magnet Machines
and 2-pole rotor •
and double-frequency inductance variation . .
and effective airgap
and magnetization curves
and optimum delta
and optimum gamma
and power factor
and recoil permeability
and saturation
and torque linearity
braking torque in line-start motor
in IPM
inverse
ratio of reluctance torque to alignment torque
test for
undesirable with squarewave drive
Saliency ratio
Salient-pole and nonsalient-pole machines
Salient-pole machines
dq transformation
inductance
with squarewave drive
of DC motor
permanent-magnet
reference axis (d-axis)
retaining sleeve
salient-pole
skew
split-ratio • ••
switching of transistors in synchronism
thermal expansion
torque at rest position
yoke
Rotor can losses
Rotor cup
flux-density
Rotor design
Rotor frequencies
rotor leakage
in IPM
permeance
see Leakage flux (pole-to-pole)
Rotor time-constant
Rotor volume
Rotor yoke
dimensions
solid steel
Rowan and Kerkman
RS232
RS485
96
.. . 92-96
. 588-592
96
96
384, 386, 389
66
66
Russell and Norsworthy •’ 51?
Saliency 68-70, 190. 248, 249, 350, 458, 509, 517, 518, 542. 543, 641. 703-705
.... 160
.... 159
.... 113
.... 642
87. 88. 91
256
250
252
265
334
333
367
94
256. 334. 335
.... 5
. 5. 19
.. 156
69. 70
.. 107
...91
1.2. 16
.. 155
...71
...82
.. 561
. . . 333, 369
507
... 326.367
249. 251. 505
335
.... 69.704
... 273.371
335
68
69.248
193
247
309Index 787
43. 51. 52. 89.662
312
370
709
Servomotor
Set-point current
Shaft position transducer
Shaft-mounted fan
Shear stress in airgap .. .
Sampling
Sampling frequency
Saturable bridges .
Saturation
378.381
378.387.401
.. . . 167. 168, 254-256. 268, 270, 503, 544, 546, 639,689
and energy partition
and Finite-element analysis
and i-f diagram
and inductance
and losses
and magnet operating point
and magnetization curves
and narrow airgap
andq-axisweb
and reluctance torque
and short-circuit ratio
and speed'torque curve
and torque linearity
cross-saturation
finite-element method
in dq-axis model
in IPM
in salient-pole machines
in single-phase bifilar motor
in stator teeth and yoke
in the dq-axis model
local
non-uniqueness of reluctance torque .
of bridges
of current-regulator
of Ld and Lq
of rotor yoke
of stator tooth-tips
on open-circuit
Schiferl
Schofield N
Second-order system
Segmented magnets
Segmented rotor sleeve
Segmented stator
Self-cleating lamination stack
Seif-commutated
Self-inductance
Self-synchronous
Sensorless control
hack-EME sensing
sinewave drive
Senes and parallel inductances
' 281-284' 296.300. 304. 305. 308, 370. 372.379.381. 467
323
• ' 88
70
262
70
... 190-192.205.207
212.214.229.245
346.368
157
266,267
248
258
367
456
24.333.334
. .. 333, 369. 414. 423. 673. 692
268
158
267.268
326
248.249.458
71
"
683
267
174
” 335
167
370.383.390.692
266-270.496
96
107
157
702
"
569

448

. 93.94. 566. 602. 603. 610. 618
618
45. 63. 98. 99. 685
98
699
210,214
’7' .. 2.371Designof BrushlessPermanent-MagnetMachines
383
325
. 2
381
394
68
368
326
326
394
377
371
373
327
326
329
375
391
389
385
326
133
705
... 131,700
88. 131. 173
... 370.375
. 65.87,681
113. 114, 700
164
788
Shin-Etsu Chemical Co Ltd Japan
Short-circuit current
Short-circuit faults
Short-circuit ratio
Short-lime operating region
Siemens
Sign conventions (permanent-magnet generator)
Sine-distributed flux
Sine-distributed magnetization
see Halbach magnet • • _ ’ ’ •; •; '
Sine-distributed windings 75. 76. 217. 242. 252. 259, 261. 266. 270. 371. 520. 561. 634
2/3
and space-vectors
Sine triangle ramp comparison
SINEWAVE DRIVE
basic concept
Chapter 7
circle tracking
design consideration
electronic control
ellipse diagram
flux-weakening
hexagon tracking
hysteresis-band
historical development
overview of controllers
phasor diagram — motor operation
PWM control algorithms
quadrature control
six-step
space-vector controller
synchronous regulator
voltage PWM (sine/triangle)
voltage-locus diagram
Sinewave motors and generators
basic concepts
Sinewound machine
Single-layer winding
Single-parameter imbalance
Single-phase bifilar motor
Single-phase line-start motor
reference-frame transformations .
symmetrical components
Single-sheet tester
Single-tooth winding
see Concentrated winding
Singly-fed machines
Sinusoidal EMF
Sinusoidally-magnetized rotor
Six-step
Sizing
Skew
and airgap flux density


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Design of Brushless Permanent-Magnet Machines
رابط مباشر لتنزيل كتاب Design of Brushless Permanent-Magnet Machines
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Design of Brushless Permanent-Magnet Machines
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Design of Brushless Permanent-Magnet Motors
» كتاب Brushless Permanent Magnet Motor Design - Second Edition
» كتاب Permanent Magnet Brushless DC Motor Drives and Controls
»  Design of Permanent Joints
» كتاب Design of Demining Machines

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى كتب ومحاضرات الأقسام الهندسية المختلفة-
انتقل الى: