rambomenaa كبير مهندسين
عدد المساهمات : 2041 التقييم : 3379 تاريخ التسجيل : 21/01/2012 العمر : 47 الدولة : مصر العمل : مدير الصيانة بشركة تصنيع ورق الجامعة : حلوان
| موضوع: كتاب Elementary Fluid Mechanics الأحد 23 يونيو 2013, 8:15 pm | |
|
تذكير بمساهمة فاتح الموضوع :معى اليوم احبتى فى الله كتاب
Elementary Fluid Mechanics Contents Preface v 1. Flows 1 1.1. What are flows? . . . . . . . . . . . . . . . . . . . . 1 1.2. Fluid particle and fields . . . . . . . . . . . . . . . . 2 1.3. Stream-line, particle-path and streak-line . . . . . . 6 1.3.1. Stream-line . . . . . . . . . . . . . . . . . . . 6 1.3.2. Particle-path (path-line) . . . . . . . . . . . 7 1.3.3. Streak-line . . . . . . . . . . . . . . . . . . . 8 1.3.4. Lagrange derivative . . . . . . . . . . . . . . 8 1.4. Relative motion . . . . . . . . . . . . . . . . . . . . 11 1.4.1. Decomposition . . . . . . . . . . . . . . . . . 11 1.4.2. Symmetric part (pure straining motion) . . . 13 1.4.3. Anti-symmetric part (local rotation) . . . . . 14 1.5. Problems . . . . . . . . . . . . . . . . . . . . . . . . 15 2. Fluids 17 2.1. Continuumand transport phenomena . . . . . . . . 17 2.2. Mass diffusion in a fluidmixture . . . . . . . . . . . 18 2.3. Thermal diffusion . . . . . . . . . . . . . . . . . . . 21 2.4. Momentum transfer . . . . . . . . . . . . . . . . . . 22 2.5. An ideal fluid and Newtonian viscous fluid . . . . . 24 2.6. Viscous stress . . . . . . . . . . . . . . . . . . . . . 26 2.7. Problems . . . . . . . . . . . . . . . . . . . . . . . . 28 vii viii Contents 3. Fundamental equations of ideal fluids 31 3.1. Mass conservation . . . . . . . . . . . . . . . . . . . 32 3.2. Conservation form. . . . . . . . . . . . . . . . . . . 35 3.3. Momentum conservation . . . . . . . . . . . . . . . 35 3.3.1. Equation ofmotion . . . . . . . . . . . . . . 36 3.3.2. Momentum flux . . . . . . . . . . . . . . . . 38 3.4. Energy conservation . . . . . . . . . . . . . . . . . . 40 3.4.1. Adiabatic motion . . . . . . . . . . . . . . . 40 3.4.2. Energy flux . . . . . . . . . . . . . . . . . . . 42 3.5. Problems . . . . . . . . . . . . . . . . . . . . . . . . 44 4. Viscous fluids 45 4.1. Equation ofmotion of a viscous fluid . . . . . . . . 45 4.2. Energy equation and entropy equation . . . . . . . 48 4.3. Energy dissipation in an incompressible fluid . . . . 49 4.4. Reynolds similarity law . . . . . . . . . . . . . . . . 51 4.5. Boundary layer . . . . . . . . . . . . . . . . . . . . 54 4.6. Parallel shear flows . . . . . . . . . . . . . . . . . . 56 4.6.1. Steady flows . . . . . . . . . . . . . . . . . . 57 4.6.2. Unsteady flow . . . . . . . . . . . . . . . . . 58 4.7. Rotating flows . . . . . . . . . . . . . . . . . . . . . 62 4.8. Low Reynolds number flows . . . . . . . . . . . . . 63 4.8.1. Stokes equation . . . . . . . . . . . . . . . . 63 4.8.2. Stokeslet . . . . . . . . . . . . . . . . . . . . 64 4.8.3. Slow motion of a sphere . . . . . . . . . . . . 65 4.9. Flows around a circular cylinder . . . . . . . . . . . 68 4.10. Drag coefficient and lift coefficient . . . . . . . . . . 69 4.11. Problems . . . . . . . . . . . . . . . . . . . . . . . . 70 5. Flows of ideal fluids 77 5.1. Bernoulli’s equation . . . . . . . . . . . . . . . . . . 78 5.2. Kelvin’s circulation theorem . . . . . . . . . . . . . 81 5.3. Flux of vortex lines . . . . . . . . . . . . . . . . . . 83 5.4. Potential flows . . . . . . . . . . . . . . . . . . . . . 85 5.5. Irrotational incompressible flows (3D) . . . . . . . . 87 Contents ix 5.6. Examples of irrotational incompressible flows (3D) . . . . . . . . . . . . . . . . . . . . . . . 88 5.6.1. Source (or sink) . . . . . . . . . . . . . . . . 88 5.6.2. A source in a uniformflow . . . . . . . . . . 90 5.6.3. Dipole . . . . . . . . . . . . . . . . . . . . . 91 5.6.4. A sphere in a uniformflow . . . . . . . . . . 92 5.6.5. A vortex line . . . . . . . . . . . . . . . . . . 94 5.7. Irrotational incompressible flows (2D) . . . . . . . . 95 5.8. Examples of 2D flows represented by complex potentials . . . . . . . . . . . . . . . . . . . . . . . 99 5.8.1. Source (or sink) . . . . . . . . . . . . . . . . 99 5.8.2. A source in a uniformflow . . . . . . . . . . 100 5.8.3. Dipole . . . . . . . . . . . . . . . . . . . . . 101 5.8.4. A circular cylinder in a uniformflow. . . . . 102 5.8.5. Point vortex (a line vortex) . . . . . . . . . . 103 5.9. Inducedmass . . . . . . . . . . . . . . . . . . . . . 104 5.9.1. Kinetic energy induced by a moving body . . . . . . . . . . . . . . . . . . 104 5.9.2. Inducedmass . . . . . . . . . . . . . . . . . 107 5.9.3. d’Alembert’s paradox and virtual mass . . . 108 5.10. Problems . . . . . . . . . . . . . . . . . . . . . . . . 109 6. Water waves and sound waves 115 6.1. Hydrostatic pressure . . . . . . . . . . . . . . . . . 115 6.2. Surface waves on deep water . . . . . . . . . . . . . 117 6.2.1. Pressure condition at the free surface . . . . 117 6.2.2. Condition of surface motion . . . . . . . . . 118 6.3. Small amplitude waves of deep water . . . . . . . . 119 6.3.1. Boundary conditions . . . . . . . . . . . . . 119 6.3.2. Traveling waves . . . . . . . . . . . . . . . . 121 6.3.3. Meaning of small amplitude . . . . . . . . . 122 6.3.4. Particle trajectory . . . . . . . . . . . . . . . 123 6.3.5. Phase velocity and group velocity . . . . . . 123 6.4. Surface waves on water of a finite depth . . . . . . 125 6.5. KdV equation for long waves on shallow water . . . . . . . . . . . . . . . . . . . . . 126 x Contents 6.6. Sound waves . . . . . . . . . . . . . . . . . . . . . . 128 6.6.1. One-dimensional flows . . . . . . . . . . . . . 129 6.6.2. Equation of sound wave . . . . . . . . . . . . 130 6.6.3. Plane waves . . . . . . . . . . . . . . . . . . 135 6.7. Shock waves . . . . . . . . . . . . . . . . . . . . . . 137 6.8. Problems . . . . . . . . . . . . . . . . . . . . . . . . 139 7. Vortex motions 143 7.1. Equations for vorticity . . . . . . . . . . . . . . . . 143 7.1.1. Vorticity equation . . . . . . . . . . . . . . . 143 7.1.2. Biot–Savart’s law for velocity . . . . . . . . . 144 7.1.3. Invariants ofmotion . . . . . . . . . . . . . . 145 7.2. Helmholtz’s theorem . . . . . . . . . . . . . . . . . 147 7.2.1. Material line element and vortex-line . . . . 147 7.2.2. Helmholtz’s vortex theorem. . . . . . . . . . 148 7.3. Two-dimensional vortex motions . . . . . . . . . . . 150 7.3.1. Vorticity equation . . . . . . . . . . . . . . . 151 7.3.2. Integral invariants . . . . . . . . . . . . . . . 152 7.3.3. Velocity field at distant points . . . . . . . . 154 7.3.4. Point vortex . . . . . . . . . . . . . . . . . . 155 7.3.5. Vortex sheet . . . . . . . . . . . . . . . . . . 156 7.4. Motion of two point vortices . . . . . . . . . . . . . 156 7.5. System of N point vortices (a Hamiltonian system) . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.6. Axisymmetric vortices with circular vortex-lines . . . . . . . . . . . . . . . . . . . . . . 161 7.6.1. Hill’s spherical vortex . . . . . . . . . . . . . 162 7.6.2. Circular vortex ring . . . . . . . . . . . . . . 163 7.7. Curved vortex filament . . . . . . . . . . . . . . . . 165 7.8. Filament equation (an integrable equation) . . . . . 167 7.9. Burgers vortex (a viscous vortex with swirl) . . . . 169 7.10. Problems . . . . . . . . . . . . . . . . . . . . . . . . 173 8. Geophysical flows 177 8.1. Flows in a rotating frame . . . . . . . . . . . . . . . 177 8.2. Geostrophic flows . . . . . . . . . . . . . . . . . . . 181 Contents xi 8.3. Taylor–Proudman theorem . . . . . . . . . . . . . . 183 8.4. Amodel of dry cyclone (or anticyclone) . . . . . . . 184 8.5. Rossby waves . . . . . . . . . . . . . . . . . . . . . 190 8.6. Stratified flows . . . . . . . . . . . . . . . . . . . . . 193 8.7. Global motions by the Earth Simulator . . . . . . . 196 8.7.1. Simulation of global atmospheric motion by AFES code . . . . . . . . . . . . . . . . . . . 198 8.7.2. Simulation of global ocean circulation by OFES code . . . . . . . . . . . . . . . . . . . 198 8.8. Problems . . . . . . . . . . . . . . . . . . . . . . . . 200 9. Instability and chaos 203 9.1. Linear stability theory . . . . . . . . . . . . . . . . 204 9.2. Kelvin–Helmholtz instability . . . . . . . . . . . . . 206 9.2.1. Linearization . . . . . . . . . . . . . . . . . . 206 9.2.2. Normal-mode analysis . . . . . . . . . . . . . 208 9.3. Stability of parallel shear flows . . . . . . . . . . . . 209 9.3.1. Inviscid flows (ν =0) . . . . . . . . . . . . . 210 9.3.2. Viscous flows . . . . . . . . . . . . . . . . . . 212 9.4. Thermal convection . . . . . . . . . . . . . . . . . . 213 9.4.1. Description of the problem . . . . . . . . . . 213 9.4.2. Linear stability analysis . . . . . . . . . . . . 215 9.4.3. Convection cell . . . . . . . . . . . . . . . . . 219 9.5. Lorenz system . . . . . . . . . . . . . . . . . . . . . 221 9.5.1. Derivation of the Lorenz system . . . . . . . 221 9.5.2. Discovery stories of deterministic chaos . . . 223 9.5.3. Stability of fixed points . . . . . . . . . . . . 225 9.6. Lorenz attractor and deterministic chaos . . . . . . 229 9.6.1. Lorenz attractor . . . . . . . . . . . . . . . . 229 9.6.2. Lorenz map and deterministic chaos . . . . . 232 9.7. Problems . . . . . . . . . . . . . . . . . . . . . . . . 235 10. Turbulence 239 10.1. Reynolds experiment . . . . . . . . . . . . . . . . . 240 10.2. Turbulence signals . . . . . . . . . . . . . . . . . . . 242 xii Contents 10.3. Energy spectrumand energy dissipation . . . . . . 244 10.3.1. Energy spectrum . . . . . . . . . . . . . . . 244 10.3.2. Energy dissipation . . . . . . . . . . . . . . 246 10.3.3. Inertial range and five-thirds law . . . . . . 247 10.3.4. Scale of viscous dissipation . . . . . . . . . 249 10.3.5. Similarity law due to Kolmogorov and Oboukov . . . . . . . . . . . . . . . . . 250 10.4. Vortex structures in turbulence . . . . . . . . . . . 251 10.4.1. Stretching of line-elements . . . . . . . . . . 251 10.4.2. Negative skewness and enstrophy enhancement . . . . . . . . . . . . . . . . . 254 10.4.3. Identification of vortices in turbulence . . . 256 10.4.4. Structure functions . . . . . . . . . . . . . . 257 10.4.5. Structure functions at small s . . . . . . . . 259 10.5. Problems . . . . . . . . . . . . . . . . . . . . . . . . 260 11. Superfluid and quantized circulation 263 11.1. Two-fluid model . . . . . . . . . . . . . . . . . . . . 264 11.2. Quantum mechanical description of superfluid flows . . . . . . . . . . . . . . . . . . . . 266 11.2.1. Bose gas . . . . . . . . . . . . . . . . . . . . 266 11.2.2. Madelung transformation and hydrodynamic representation . . . . . . . . . . . . . . . . 267 11.2.3. Gross–Pitaevskii equation . . . . . . . . . . 268 11.3. Quantized vortices . . . . . . . . . . . . . . . . . . 269 11.3.1. Quantized circulation . . . . . . . . . . . . 270 11.3.2. A solution of a hollow vortex-line in a BEC . . . . . . . . . . . . . . . . . . . . . 271 11.4. Bose–Einstein Condensation (BEC) . . . . . . . . . 273 11.4.1. BEC in dilute alkali-atomic gases . . . . . . 273 11.4.2. Vortex dynamics in rotating BEC condensates . . . . . . . . . . . . . . . . . . 274 11.5. Problems . . . . . . . . . . . . . . . . . . . . . . . . 275 Contents xiii 12. Gauge theory of ideal fluid flows 277 12.1. Backgrounds of the theory . . . . . . . . . . . . . . 278 12.1.1. Gauge invariances . . . . . . . . . . . . . . 278 12.1.2. Review of the invariance in quantum mechanics . . . . . . . . . . . . . . . . . . . 279 12.1.3. Brief scenario of gauge principle . . . . . . 281 12.2. Mechanical system . . . . . . . . . . . . . . . . . . 282 12.2.1. System of n point masses . . . . . . . . . . 282 12.2.2. Global invariance and conservation laws . . 284 12.3. Fluid as a continuous field of mass . . . . . . . . . 285 12.3.1. Global invariance extended to a fluid . . . . 286 12.3.2. Covariant derivative . . . . . . . . . . . . . 287 12.4. Symmetry of flow fields I: Translation symmetry . . 288 12.4.1. Translational transformations . . . . . . . . 289 12.4.2. Galilean transformation (global) . . . . . . 289 12.4.3. Local Galilean transformation . . . . . . . . 290 12.4.4. Gauge transformation (translation symmetry) . . . . . . . . . . . . . . . . . . 291 12.4.5. Galilean invariant Lagrangian . . . . . . . . 292 12.5. Symmetry of flow fields II: Rotation symmetry . . . 294 12.5.1. Rotational transformations . . . . . . . . . 294 12.5.2. Infinitesimal rotational transformation . . . 295 12.5.3. Gauge transformation (rotation symmetry) 297 12.5.4. Significance of local rotation and the gauge field . . . . . . . . . . . . . . . . . . 299 12.5.5. Lagrangian associated with the rotation symmetry . . . . . . . . . . . . . . . . . . . 300 12.6. Variational formulation for flows of an ideal fluid . 301 12.6.1. Covariant derivative (in summary) . . . . . 301 12.6.2. Particle velocity . . . . . . . . . . . . . . . 301 12.6.3. Action principle . . . . . . . . . . . . . . . 302 12.6.4. Outcomes of variations . . . . . . . . . . . . 303 12.6.5. Irrotational flow . . . . . . . . . . . . . . . 304 12.6.6. Clebsch solution . . . . . . . . . . . . . . . 305 xiv Contents 12.7. Variations and Noether’s theorem . . . . . . . . . . 306 12.7.1. Local variations . . . . . . . . . . . . . . . . 307 12.7.2. Invariant variation . . . . . . . . . . . . . . 308 12.7.3. Noether’s theorem . . . . . . . . . . . . . . 309 12.8. Additional notes . . . . . . . . . . . . . . . . . . . . 311 12.8.1. Potential parts . . . . . . . . . . . . . . . . 311 12.8.2. Additional note on the rotational symmetry 312 12.9. Problem . . . . . . . . . . . . . . . . . . . . . . . . 313 Appendix A Vector analysis 315 A.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . 315 A.2. Scalar product . . . . . . . . . . . . . . . . . . . . . 316 A.3. Vector product . . . . . . . . . . . . . . . . . . . . 316 A.4. Triple products . . . . . . . . . . . . . . . . . . . . 317 A.5. Differential operators . . . . . . . . . . . . . . . . . 319 A.6. Integration theorems . . . . . . . . . . . . . . . . . 319 A.7. δ function . . . . . . . . . . . . . . . . . . . . . . . 320 Appendix B Velocity potential, stream function 323 B.1. Velocity potential . . . . . . . . . . . . . . . . . . . 323 B.2. Streamfunction (2D) . . . . . . . . . . . . . . . . . 324 B.3. Stokes’s streamfunction (axisymmetric) . . . . . . 326 Appendix C Ideal fluid and ideal gas 327 Appendix D Curvilinear reference frames: Differential operators 329 D.1. Frenet–Serret formula for a space curve . . . . . . . 329 D.2. Cylindrical coordinates . . . . . . . . . . . . . . . . 330 D.3. Spherical polar coordinates . . . . . . . . . . . . . . 332 Appendix E First three structure functions 335 Contents xv Appendix F Lagrangians 337 F.1. Galilei invariance and Lorentz invariance . . . . . . 337 F.1.1. Lorentz transformation . . . . . . . . . . . . 337 F.1.2. Lorenz-invariant Galilean Lagrangian . . . . 338 F.2. Rotation symmetry . . . . . . . . . . . . . . . . . . 340 Solutions 343 References 373
رابط تنزيل كتاب Elementary Fluid Mechanics
|
|