Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Introduction to Control Engineering Modeling Analysis and Design الجمعة 05 يوليو 2013, 11:19 am | |
|
أخوانى فى الله أحضرت لكم كتاب Introduction to Control Engineering Modeling Analysis and Design
ويتناول الموضوعات الأتية :
1.0 Introduction to Control Engineering 1 1.1 The Concept of Feedback and Closed Loop Control 2 1.2 Open-Loop Versus Closed-Loop Systems 2 1.3 Feedforward Control 7 1.4 Feedback Control in Nature 9 1.5 A Glimpse of the Areas where Feedback Control Systems have been Employed by Man 10 1.6 Classification of Systems 10 1.6.1 Linear System 11 1.6.2 Time-Invariant System 11 1.7 Task of Control Engineers 13 1.8 Alternative Ways to Accomplish a Control Task 14 1.9 A Closer Look to the Control Task 15 1.9.1 Mathematical Modeling 16 1.9.2 Performance Objectives and Design Constraints 17 1.9.3 Controller Design 19 1.9.4 Performance Evaluation 19 2.0 The Laplace Transform 21 2.1 Complex Variables And Complex Functions 21 2.1.1 Complex Function 21 2.2 Laplace Transformation 22 2.2.1 Laplace Transform and Its Existence 23 2.3 Laplace Transform of Common Functions 23 2.3.1 Laplace Table 26 2.4 Properties of Laplace Transform 27 2.5 Inverse Laplace Transformation 31 2.5.1 Partial-Fraction Expansion Method 32 2.5.2 Partial-Fraction Expansion when F(s) has only Distinct Poles 32 2.5.3 Partial-Fraction Expansion of F(s) with Repeated Poles 34 xii CONTENTS 2.6 Concept of Transfer Function 35 2.7 Block Diagrams 36 2.7.1 Block Diagram Reduction 39 2.8 Signal Flow Graph Representation 42 2.8.1 Signal Flow Graphs 42 2.8.2 Properties of Signal Flow Graphs 43 2.8.3 Signal Flow Graph Algebra 43 2.8.4 Representation of Linear Systems by Signal Flow Graph 44 2.8.5 Mason’s Gain Formula 45 2.9 Vectors and Matrices 48 2.9.1 Minors, Cofactors and Adjoint of a Matrix 49 2.10 Inversion of a Nonsingular Matrix 51 2.11 Eigen Values and Eigen Vectors 52 2.12 Similarity Transformation 53 2.12.1 Diagonalization of Matrices 53 2.12.2 Jordan Blocks 54 2.13 Minimal Polynomial Function and Computation of Matrix Function Using Sylvester’s Interpolation 55 MATLAB Scripts 57 Review Exercise 58 Problems 60 3.1 Introduction 65 3.2 System Representation in State-variable Form 66 3.3 Concepts of Controllability and Observability 69 3.4 Transfer Function from State-variable Representation 73 3.4.1 Computation of Resolvent Matrix from Signal Flow Graph 75 3.5 State Variable Representation from Transfer Function 77 3.6 Solution of State Equation and State Transition Matrix 81 3.6.1 Properties of the State Transition Matrix 82 Review Exercise 83 Problems 85 4.1 Time-Domain Performance of Control Systems 89 4.2 Typical Test Inputs 89 4.2.1 The Step-Function Input 89 4.2.2 The Ramp-Function Input 90 4.2.3 The Impulse-Function Input 90 4.2.4 The Parabolic-Function Input 90 4.3 Transient State and Steady State Response of Analog Control System 91 CONTENTS xiii 4.4 Performance Specification of Linear Systems in Time-Domain 92 4.4.1 Transient Response Specifications 92 4.5 Transient Response of a Prototype Second-order System 93 4.5.1 Locus of Roots for the Second Order Prototype System 94 4.5.1.1 Constant wn Locus 94 4.5.1.2 Constant Damping Ratio Line 94 4.5.1.3 Constant Settling Time 94 4.5.2 Transient Response with Constant wn and Variable δ 95 4.5.2.1 Step Input Response 95 4.6 Impulse Response of a Transfer Function 100 4.7 The Steady-State Error 101 4.7.1 Steady-State Error Caused by Nonlinear Elements 102 4.8 Steady-State Error of Linear Control Systems 102 4.8.1 The Type of Control Systems 103 4.8.2 Steady-State Error of a System with a Step-Function Input 104 4.8.3 Steady-State Error of A System with Ramp-Function Input 105 4.8.4 Steady-State Error of A System with Parabolic-Function Input 106 4.9 Performance Indexes 107 4.9.1 Integral of Squared Error (ISE) 108 4.9.2 Integral of Time Multiplied Squared Error (ITSE) Criteria 108 4.9.3 Integral of Absolute Error (IAE) Criteria 108 4.9.4 Integral of Time Multiplied Absolute Error (ITAE) 109 4.9.5 Quadratic Performance Index 110 4.10 Frequency Domain Response 110 4.10.1 Frequency Response of Closed-Loop Systems 111 4.10.2 Frequency-Domain Specifications 112 4.11 Frequency Domain Parameters of Prototype Second-Order System 112 4.11.1 Peak Resonance and Resonant Frequency 112 4.11.2 Bandwidth 114 4.12 Bode Diagrams 115 4.12.1 Bode Plot 115 4.12.2 Principal Factors of Transfer Function 116 4.13 Procedure for Manual Plotting of Bode Diagram 121 4.14 Minimum Phase and Non-Minimum Phase Systems 122 MATLAB Scripts 123 Review Exercise 125 Problems 126 5.1 The Concept of Stability 131 5.2 The Routh-Hurwitz Stability Criterion 134 5.2.1 Relative Stability Analysis 139 5.2.2 Control System Analysis Using Routh’s Stability Criterion 139 5.3 Stability by the Direct Method of Lyapunov 140 xiv CONTENTS 5.3.1 Introduction to the Direct Method of Lyapunov 140 5.3.2 System Representation 141 5.4 Stability by the Direct Method of Lyapunov 141 5.4.1 Definitions of Stability 143 5.4.2 Lyapunov Stability Theorems 144 5.5 Generation of Lyapunov Functions for Autonomous Systems 147 5.5.1 Generation of Lyapunov Functions for Linear Systems 147 5.6 Estimation of Settling Time Using Lyapunov Functions 150 MATLAB Scripts 153 Review Exercise 154 Problems 155 6.1 Introduction 159 6.1.1 Poles and Zeros of Open Loop and Closed Loop Systems 159 6.1.2 Mapping Contour and the Principle of the Argument 160 6.2 The Nyquist Criterion 165 6.2.1 The Nyquist Path 166 6.2.2 The Nyquist Plot Using a Part of Nyquist Path 175 6.3 Nyquist Plot of Transfer Function with Time Delay 176 6.4 Relative Stability: Gain Margin and Phase Margin 177 6.4.1 Analytical Expression for Phase Margin and Gain Margin of a Second Order Prototype 182 6.5 Gain-Phase Plot 183 6.5.1 Constant Amplitude (M) and Constant Phase (N) Circle 183 6.6 Nichols Plot 186 6.6.1 Linear System Response Using Graphical User Interface in MATLAB 188 MATLAB Scripts 188 Review Exercise 189 Problems 190 7.1 Correlation of System-Roots with Transient Response 192 7.2 The Root Locus Diagram–A Time Domain Design Tool 192 7.3 Root Locus Technique 193 7.3.1 Properties of Root Loci 194 7.4 Step by Step Procedure to Draw the Root Locus Diagram 201 7.5 Root Locus Design Using Graphical Interface in MATLAB 211 7.6 Root Locus Technique for Discrete Systems 212 7.7 Sensitivity of the Root Locus 213 MATLAB Scripts 213 Review Exercise 214 Problems 217 CONTENTS xv 8.1 Introduction 218 8.2 Approaches to System Design 218 8.2.1 Structure of the Compensated System 219 8.2.2 Cascade Compensation Networks 220 8.2.3 Design Concept for Lag or Lead Compensator in Frequency-Domain 224 8.2.4 Design Steps for Lag Compensator 226 8.2.5 Design Steps for Lead Compensator 226 8.2.6 Design Examples 226 8.3 Design of Compensator by Root Locus Technique 238 8.3.1 Design of Phase-lead Compensator Using Root Locus Procedure 238 8.3.2 Design of Phase-lag Compensator Using Root Locus Procedure 240 8.4 PID Controller 241 8.4.1 Ziegler-Nichols Rules for Tuning PID Controllers 242 8.4.2 First Method 242 8.4.3 Second Method 243 8.5 Design of Compensators for Discrete Systems 246 8.5.1 Design Steps for Lag Compensator 248 8.5.2 Design Steps for Lead Compensator 248 MATLAB Scripts 249 Review Exercise 252 Problems 253 9.1 Pole Assignment Design and State Estimation 255 9.1.1 Ackerman’s Formula 256 9.1.2 Guidelines for Placement of Closed Loop System Poles 258 9.1.3 Linear Quadratic Regulator Problem 258 9.2 State Estimation 259 9.2.1 Sources of Error in State Estimation 260 9.2.2 Computation of the Observer Parameters 261 9.3 Equivalent Frequency-Domain Compensator 264 9.4 Combined Plant and Observer Dynamics of the Closed Loop System 265 9.5 Incorporation of a Reference Input 266 9.6 Reduced-Order Observer 267 9.7 Some Guidelines for Selecting Closed Loop Poles in Pole Assignment Design 270 MATLAB Scripts 271 Review Exercise 272 Problems 275 10.0 Why We are Interested in Sampled Data Control System? 276 xvi CONTENTS 10.1 Advantage of Digital Control 276 10.2 Disadvantages 277 10.3 Representation of Sampled Process 278 10.4 The Z-Transform 279 10.4.1 The Residue Method 280 10.4.2 Some Useful Theorems 282 10.5 Inverse Z-Transforms 286 10.5.1 Partial Fraction Method 286 10.5.2 Residue Method 286 10.6 Block Diagram Algebra for Discrete Data System 287 10.7 Limitations of the Z-Transformation Method 292 10.8 Frequency Domain Analysis of Sampling Process 292 10.9 Data Reconstruction 297 10.9.1 Zero Order Hold 299 10.10 First Order Hold 302 10.11 Discrete State Equation 305 10.12 State Equations of Systems with Digital Components 308 10.13 The Solution of Discrete State Equations 308 10.13.1 The Recursive Method 308 10.14 Stability of Discrete Linear Systems 311 10.14.1 Jury’s Stability Test 313 10.15 Steady State Error for Discrete System 316 10.16 State Feedback Design for Discrete Systems 321 10.16.1 Predictor Estimator 321 10.16.2 Current Estimator 322 10.16.3 Reduced-order Estimator for Discrete Systems 325 10.17 Provision for Reference Input 326 MATLAB Scripts 327 Review Exercise 329 Problems 331 11.1 Introduction 333 11.2 Optimal Control Problem 333 11.3 Performance Index 336 11.4 Calculus of Variations 336 11.4.1 Functions and Functionals 337 A. Closeness of Functions 338 B. Increment of a Functional 339 C. The Variation of a Functional 339 11.4.2 The Fundamental Theorem of the Calculus of Variations 342 11.4.3 Extrema of Functionals of a Single Function 343 11.4.3.1 Variational Problems and the Euler Equation 343 11.4.3.2 Extrema of Functionals of n Functions 346 11.4.3.3 Variable End Point Problems 347 CONTENTS xvii 11.4.4 Optimal Control Problem 352 11.4.5 Pontryagin’s Minimum Principle 354 11.5 The LQ Problem 357 11.5.1 The Hamilton-Jacobi Approach 358 11.5.2 The Matrix Riccati Equation 359 11.5.3 Finite Control Horizon 360 11.5.4 Linear Regulator Design (Infinite-time Problem) 362 11.6 Optimal Controller for Discrete System 363 11.6.1 Linear Digital Regulator Design (Infinite-time Problem) 365 MATLAB Scripts 367 Review Exercise 367 Problems 369 12.1 The Concept of Fuzzy Logic and Relevance of Fuzzy Control 371 12.2 Industrial and Commercial Use of Fuzzy Logic-based Systems 373 12.3 Fuzzy Modeling and Control 373 12.3.1 Advantages of Fuzzy Controller 374 12.3.2 When to Use Fuzzy Control 375 12.3.3 Potential Areas of Fuzzy Control 375 12.3.4 Summary of Some Benefits of Fuzzy Logic and Fuzzy Logic Based Control System 376 12.3.5 When Not to Use Fuzzy Logic 377 12.4 Fuzzy Sets and Membership 377 12.4.1 Introduction to Sets 377 12.4.2 Classical Sets 378 12.4.3 Fuzzy Sets 379 12.5 Basic Definitions of Fuzzy Sets and a Few Terminologies 379 12.5.1 Commonly Used Fuzzy Set Terminologies 381 12.6 Set-Theoretic Operations 384 12.6.1 Classical Operators on Fuzzy Sets 384 12.6.2 Generalized Fuzzy Operators 386 12.6.2.1 Fuzzy Complement 386 12.6.2.2 Fuzzy Union and Intersection 387 12.6.2.3 Fuzzy Intersection: The T-Norm 387 12.6.2.4 Fuzzy Union: The T-Conorm (or S-Norm) 388 12.7 MF Formulation and Parameterization 388 12.7.1 MFs of One Dimension 389 12.8 From Numerical Variables to Linguistic Variables 391 12.8.1 Term Sets of Linguistic Variables 393 12.9 Classical Relations and Fuzzy Relations 394 12.9.1 Cartesian Product 394 12.9.2 Crisp Relations 394 12.9.3 Fuzzy Relations 395 12.9.4 Operation on Fuzzy Relations 396 xviii CONTENTS 12.10 Extension Principle 402 12.11 Logical Arguments and Propositions 403 12.11.1 Logical Arguments 403 12.11.2 Modus Ponens 407 12.11.3 Modus Tollens 407 12.11.4 Hypothetical Syllogism 407 12.12 Interpretations of Fuzzy If-then Rules 407 12.12.1 Fuzzy Relation Equations 409 12.13 Basic Principles of Approximate Reasoning 410 12.13.1 Generalized Modus Ponens 410 12.13.2 Generalized Modus Tollens 410 12.13.4 Generalized Hypothetical Syllogism 411 12.14 Representation of a Set of Rules 411 12.14.1 Approximate Reasoning with Multiple Conditional Rules 413 MATLAB Scripts 416 Problems 417 13.1 The Structure of Fuzzy Logic-based Controller 419 13.1.1 Knowledge Base 420 13.1.2 Rule Base 421 13.1.2.1 Choice of Sate Variables and Controller Variables 421 13.1.3 Contents of Antecedent and Consequent of Rules 422 13.1.4 Derivation of Production Rules 422 13.1.5 Membership Assignment 423 13.1.6 Cardinality of a Term Set 423 13.1.7 Completeness of Rules 423 13.1.8 Consistency of Rules 424 13.2 Inference Engine 424 13.2.1 Special Cases of Fuzzy Singleton 426 13.3 Reasoning Types 427 13.4 Fuzzification Module 428 13.4.1 Fuzzifier and Fuzzy Singleton 428 13.5 Defuzzification Module 429 13.5.1 Defuzzifier 429 13.5.2 Center of Area (or Center of Gravity) Defuzzifier 430 13.5.3 Center Average Defuzzifier (or Weighted Average Method) 431 13.6 Design Consideration of Simple Fuzzy Controllers 432 13.7 Design Parameters of General Fuzzy Controllers 433 13.8 Examples of Fuzzy Control System Design: Inverted Pendulum 434 13.9 Design of Fuzzy Logic Controller on Simulink and MATLAB Environment 441 13.9.1 Iterative Design Procedure of a PID Controller in MATLAB Environment 441 13.9.2 Simulation of System Dynamics in Simulink for PID Controller Design 444 13.9.3 Simulation of System Dynamics in Simulink for Fuzzy Logic Controller Design 446 Problems 449 14.1 Introduction 453 14.1.1 Some Phenomena Peculiar to Nonlinear Systems 454 14.2 Approaches for Analysis of Nonlinear Systems: Linearization 457 14.3 Describing Function Method 458 14.4 Procedure for Computation of Describing Function 459 14.5 Describing Function of Some Typical Nonlinear Devices 460 14.5.1 Describing Function of an Amplifying Device with Dead Zone and Saturation 460 14.5.2 Describing Function of a Device with Saturation but without any Dead Zone 463 14.5.3 Describing Function of a Relay with Dead Zone 464 14.5.4 Describing Function of a Relay with Dead Zone and Hysteresis 464 14.5.5 Describing Function of a Relay with Pure Hysteresis 466 14.5.6 Describing Function of Backlash 466 14.6 Stability Analysis of an Autonomous Closed Loop System by Describing Function 468 14.7 Graphical Analysis of Nonlinear Systems by Phase-Plane Methods 471 14.8 Phase-Plane Construction by the Isocline Method 472 14.9 Pell’s Method of Phase-Trajectory Construction 474 14.10 The Delta Method of Phase-Trajectory Construction 476 14.11 Construction of Phase Trajectories for System with Forcing Functions 477 14.12 Singular Points 477 14.13 The Aizerman and Kalman Conjectures 481 14.13.1 Popov’s Stability Criterion 482 14.13.2 The Generalized Circle Criteria 482 14.13.3 Simplified Circle Criteria 483 14.13.4 Finding Sectors for Typical Nonlinearities 484 14.13.5 S-function SIMULINK Solution of Nonlinear Equations 485 MATLAB Scripts 489 Problems 492 15.1 Introduction 493 15.2 Implementation of Controller Algorithm 493 15.2.1 Realization of Transfer Function 493 CONTENTS xix 15.2.2 Series or Direct Form 1 494 15.2.3 Direct Form 2 (Canonical) 495 15.2.4 Cascade Realization 496 15.2.5 Parallel Realization 497 15.3 Effects of Finite Bit Size on Digital Controller Implementation 500 15.3.1 Sign Magnitude Number System (SMNS) 500 15.3.1.1 Truncation Quantizer 500 15.3.1.2 Round-off Quantizer 500 15.3.1.3 Mean and Variance 502 15.3.1.4 Dynamic Range of SMNS 503 15.3.1.5 Overflow 503 15.3.2 Two’s Complement Number System 504 15.3.2.1 Truncation Operation 504 15.3.2.2 Round-off Quantizer in Two’s CNS 505 15.3.2.3 Mean and Variance 505 15.3.2.4 Dynamic Range for Two’s CNS 506 15.3.2.5 Overflow 506 15.4 Propagation of Quantization Noise Through the Control System 507 15.5 Very High Sampling Frequency Increases Noise 507 15.6 Propagation of ADC Errors and Multiplication Errors through the Controller 508 15.6.1 Propagated Multiplication Noise in Parallel Realization 508 15.6.2 Propagated Multiplication Noise in Direct Form Realization 510 15.7 Coefficient Errors and Their Influence on Controller Dynamics 511 15.7.1 Sensitivity of Variation of Coefficients of a Second Order Controller 511 15.8 Word Length in A/D Converters, Memory, Arithmetic Unit and D/A Converters 512 15.9 Quantization gives Rise to Nonlinear Behavior in Controller 515 15.10 Avoiding the Overflow 517 15.10.1 Pole Zero Pairing 517 15.10.2 Amplitude Scaling for Avoiding Overflow 518 15.10.3 Design Guidelines 518 MATLAB Scripts 519 Problems 520 Appendex A 522 Appendex B 579 Appendex C 585 Notes on MATLAB Use 589 Bibliography 595 Index 601
أتمنى أن تستفيدوا منه وأن ينال إعجابكم
رابط تنزيل كتاب Introduction to Control Engineering Modeling Analysis and Design
|
|
محمد محمد أحمد مهندس فعال جدا جدا
عدد المساهمات : 654 التقييم : 694 تاريخ التسجيل : 14/11/2012 العمر : 32 الدولة : EGYPT العمل : Student الجامعة : Menoufia
| موضوع: رد: كتاب Introduction to Control Engineering Modeling Analysis and Design الأربعاء 10 يوليو 2013, 6:36 pm | |
| |
|
Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Introduction to Control Engineering Modeling Analysis and Design الأربعاء 10 يوليو 2013, 6:51 pm | |
|
- محمد محمد أحمد كتب:
- جزاك الله كل خير
جزانا الله وإياك خيراً |
|