Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Computer Aided Analysis of Mechanical Systems الأحد 03 يونيو 2018, 5:58 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Computer Aided Analysis of Mechanical Systems PARVIZ E. NIKRAVESH Aerospace and Mechanical Engineering Department University of Arizona
ويتناول الموضوعات الأتية :
Contents Preface ix Note on Unit System xiii 1 INTRODUCTION 1 1.1 Computers in Design and Manufacturing 1 1.1.1 Computer-Aided Analysis 2 1.2 Multibody Mechanical Systems 3 1.3 Branches of Mechanics 6 1.3.1 Methods of Analysis 6 1.4 Computational Methods 9 1.4.1 Efficiency versus Simplicity 10 1.4.2 A General-Purpose Program 14 2 VECTORS AND MATRICES 19 2.1 Geometric Vectors 19 2.2 Matrix and Algebraic Vectors 21 2.2.1 Matrix Operations 21 2.2.2 Algebraic Vector Operations 24 2.3 Vector and Matrix Differentiation 28 2.3.1 Time Derivatives 28 2.3.2 Partial Derivatives 29 Problems 33 iii3 4 iv BASIC CONCEPTS AND NUMERICAL METHODS IN KINEMATICS 3.1 Definitions 35 3.1.1 Classification of Kinematic Pairs 37 3.1.2 Vector of Coordinates 38 3.1.3 Degrees of Freedom 40 3.1.4 Constraint Equations 41 3.1.5 Redundant Constraints 41 3.2 Kinematic Analysis 42 3.2.1 Coordinate Partitioning Method 43 3.2.2 Method of Appended Driving Constraints 48 3.3 Linear Algebraic Equations 50 3.3.1 Gaussian Methods 51 3.3.2 Pivoting 53 3.3.3 L-U Factorization 56 3.3.4 L-U Factorization with Pivoting 61 3.3.5 Subroutines for Linear Algebraic Equations 63 3.4 Nonlinear Algebraic Equations 66 3.4.1 Newton-Raphson Method for One Equation in One Unknown 66 3.4.2 Newton-Raphson Methodfor n Equations in n Unknowns 67 3.4.3 A Subroutine for Nonlinear Algebraic Equations 70 Problems 72 PLANAR KINEMATICS 4.1 Cartesian Coordinates 77 4.2 Kinematic Constraints 80 4.2.1 Revolute and Translational Joints (LP) 81 4.2.2 Composite Joints (LP) 84 4.2.3 Spur Gears and Rack and Pinion (HP) 86 4.2.4 Curve Representation 89 4.2.5 Cam-Followers (HP) 93 4.2.6 Point-Follower (HP) 97 4.2.7 Simplified Constraints 98 4.2.8 Driving Links 100 4.3 Position, Velocity, and Acceleration Analysis 101 4.3.1 Systematic Generation of Some Basic Elements 103 4.4 Kinematic Modeling 105 4.4.1 Slider-Crank Mechanism 105 4.4.2 Quick-Return Mechanism 110 Problems 115 Contents 35 775 6 7 Contents A FORTRAN PROGRAM FOR ANALYSIS OF PLANAR KINEMATICS 5.1 Kinematic Analysis Program (KAP) 119 5.1.1 Model-Description Subroutines 123 5.1.2 Kinematic Analysis 127 5.1.3 Function Evaluation 130 5.1.4 Input Prompts 134 5.2 Simple Examples 134 5.2.1 Four-Bar Linkage 135 5.2.2 Slider-Crank Mechanism 137 5.2.3 Quick-Return Mechanism 139 5.3 Program Expansion 140 Problems 140 EULER PARAMETERS 6.1 Coordinates of A Body 153 6.1.1 Euler's Theorem on the Motion of a Body 157 6.1.2 Active and Passive Points of View 157 6.1.3 Euler Parameters 158 6.1.4 Determination of Euler Parameters 160 6.1.5 Determination of the Direction Cosines 164 6.2 Identities with Euler Parameters 166 6.2.1 Identities with Arbitrary Vectors 170 6.3 The Concept of Angular Velocity 172 6.3.1 Time Derivatives of Euler Parameters 174 6.4 Semirotating Coordinate Systems 176 6.5 Relative Axis of Rotation 177 6.5.1 Intermediate Axis of Rotation 180 6.6 Finite Rotation 180 Problems 181 SPATIAL KINEMATICS 7.1 Relative Constraints between Two Vectors 186 7.1.1 Two Perpendicular Vectors 188 7.1.2 Two Parallel Vectors 188 7.2 Relative Constraints between Two Bodies 189 7.2.1 Spherical, Universal, and Revolute Joints (LP) 190 7.2.2 Cylindrical, Translational, and Screw Joints (LP) 192 7.2.3 Composite Joints 196 7.2.4 Simplified Constraints 199 v 119 153 1868 9 10 7.3 Position, Velocity, and Acceleration Analysis 200 7.3.1 Modified Jacobian Matrix and Modified Vector 'Y 201 Problems 204 BASIC CONCEPTS IN DYNAMICS 8.1 Dynamics of a Particle 208 8.2 Dynamics of a System of Particles 209 8.3 Dynamics of a Body 211 8.3.1 Moments and Couples 212 8.3.2 Rotational Equations of Motion 215 8.3.3 The Inertia Tensor 217 8.3.4 An Unconstrained Body 219 8.4 Dynamics of a System of Bodies 221 8.4.] A System of Unconstrained Bodies 221 8.4.2 A System of Constrained Bodies 222 8.4.3 Constraint Reaction Forces 223 8.5 Conditions for Planar Motion 224 PLANAR DYNAMICS 9.1 Equations of Motion 227 9.2 Vector of Forces 229 9.2.1 Gravitational Force 229 9.2.2 Single Force or Moment 229 9.2.3 Translational Actuators 231 9.2.4 Translational Springs 232 9.2.5 Translational Dampers 234 9.2 .6 Rotational Springs 236 9.2.7 Rotational Dampers 237 9.3 Constraint Reaction Forces 237 9.3.1 Revolute Joint 237 9.3.2 Revolute-Revolute Joint 240 9.3 .3 Translational Joint 242 9.4 System of Planar Equations of Motion 242 9.5 Static Forces 244 9.6 Static Balance Forces 245 9.7 Kinetostatic Analysis 247 Problems 248 A FORTRAN PROGRAM FOR ANALYSIS OF PLANAR DYNAMICS 10.1 Solving the Equations of Motion 253 10.2 Dynamic Analysis Program (DAP) 254 10.2.1 Model-Description Subroutines 258 208 227 25311 12 Contents 10.2.2 Dynamic Analysis 260 10.2.3 Function Evaluation 263 10.2.4 Force Evaluation 263 10.2.5 Reporting 265 10.2.6 Static Analysis 266 10.2.7 Input Prompts 267 10.3 Simple Examples 268 10.3.1 Four-Bar Linkage 268 10.3.2 Horizontal Platform 269 10.3.3 Dump Truck 273 10.4 Time Step Selection 277 Problems 281 SPATIAL DYNAMICS 1l.1 Vector of Forces 289 11.1.1 Conversion of Moments 289 11.2 Equations of Motion for an Unconstrained Body 291 11.3 Equations of Motion for a Constrained Body 292 11.4 System of Equations 293 11.4.1 Unconstrained Bodies 294 11.4.2 Constrained Bodies 296 11.5 Conversion of Kinematic Equations 297 Problems 299 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 12.1 lnitial-Value Problems 301 12.2 Taylor Series Algorithms 302 12.2.1 Runge-Kutta Algorithms 303 12.2.2 A Subroutine for a Runge-Kutta Algorithm 304 12.3 Polynomial Approximation 307 12.3.1 Explicit Multistep Algorithms 308 12.3 .2 Implicit Multistep Algorithms 308 12.3.3 Predictor-Corrector Algorithms 309 12.3.4 Methods for Starting Multistep Algorithms 309 12.4 Algorithms for Stiff Systems 310 12.5 Algorithms for Variable Order and Step Size Problems 311 311 vii 289 301viii 13 NUMERICAL METHODS IN DYNAMICS 13.1 Integration Arrays 313 13.2 Kinematically Unconstrained Systems 314 13.2.1 Mathematical Constraints 315 13.2.2 Using Angular Velocities 317 13.3 Kinematically Constrained Systems 318 13.3.1 Constraint Violation Stabilization Method 319 13.3.2 Coordinate Partitioning Method 321 13.3.3 Automatic Partitioning of the Coordinates 324 13.3.4 Stiff Differential Equation Method 327 13.4 Joint Coordinate Method 330 13.4.1 Open·Chain Systems 331 13 .4.2 Closed·Loop Systems 334 Problems 335 14 STATIC EQUILIBRIUM ANALYSIS 14.1 An Iterative Method 339 14.1.1 Coordinate Partitioning 340 14.2 Potential Energy Function 341 14.2.1 Minimization of Potential Energy 342 14.3 Fictitious Damping Method 344 14.4 Joint Coordinates Method 345 Appendix A. EULER ANGLES AND BRYANT ANGLES A.I Euler Angles 347 A.1.1 Time Derivatives of Euler Angles 349 A.2 Bryant Angles 351 A.2.1 Time Derivatives of Bryant Angles 352 Appendix B. RELATIONSHIP BETWEEN EULER PARAMETERS AND EULER ANGLES B.1 Euler Parameters in Terms of Euler Angles B.2 Euler Angles in Terms of Euler Parameters Appendix C. COORDINATE PARTITIONING WITH L-U FACTORIZATION REFERENCES BIBLIOGRAPHY
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا منه وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Computer Aided Analysis of Mechanical Systems رابط مباشر لتنزيل كتاب Computer Aided Analysis of Mechanical Systems
|
|