Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رسالة ماجستير بعنوان Electrochemical Reduction of Co2 الإثنين 30 نوفمبر 2020, 4:06 pm | |
|
أخوانى فى الله أحضرت لكم رسالة ماجستير بعنوان Electrochemical Reduction of Co2 By Muhammad Irfan Malik a Thesis Presented to the 38 Deanship of Graduate Studies King Fahd University of Petroleum & Minerals I Dhahran, Saudi Arabia In Partial Fulfillment of the Requirements for the Degree of Master of Science Chemical Engineering
و المحتوى كما يلي :
Table of Contents Acknowledgments V Table of Contents . Vi List of Tables Ix List of Figures X List of Abbreviations Xiii Abstract Xiv Xviملخص الرسالة Chapter 1 Introduction . 1 Chapter 2 Literature Review . 6 2.1 CO2 reduction methods . 6 2.1.1 Hydrogenation of CO2/CO 6 2.1.2 Electrochemical CO2 reduction .10 2.1.3 Photochemical reduction of CO2: .19 2.2 A detailed review of electrochemical CO2 reduction . 22 2.3 Mechanism of electrochemical CO2 reduction to hydrocarbon and alcohols . 31 2.4 Objective . 41 CHAPTER 3 RESEARCH METHODOLOGY 43 3.1 Materials and Preparation 43 3.1.1 Impregnation of cupric oxides on carbon nanotubes 44 3.1.2 Impregnation of cuprous oxides on carbon nanotubes .45 3.2 Material Characterization . 45vii 3.2.1 Thermogravimetric Analysis (TGA) .46 3.2.2 Scanning Electron Microscopy (SEM) .46 3.2.3 X-ray diffractogram (XRD) 47 3.2.4 Transmission Electron Microscopy (TEM) 47 3.2.5 Raman Spectroscopy 48 3.3 Electrochemical Setup . 48 3.3.1 Working electrode Preparation 50 3.3.2 Design of electrochemical Cell .51 3.3.3 Nafion 117 Membrane .53 3.3.4 Cupric oxide and cuprous oxide based working electrodes .54 3.4 Electrochemical Test . 55 3.4.1 Linear sweep voltammetry .55 3.4.2 Choronoamperometry .56 Chapter 4 Results and Discussion 58 4.1 Physical Characterization 58 4.1.1 SEM and EDX analysis .58 4.1.2 Energy dispersive X-ray (EDX) analysis .65 4.1.3 X-ray diffraction Analysis (XRD Analysis) 69 4.1.4 Thermogravimetric analysis (TGA) .72 4.1.5 Raman Spectroscopy 73 4.1.6 N2 adsorption isotherms 75 4.1.7 Transmission electron microscopy (TEM) 76 4.2 Linear sweep voltammetry for carbon nanotubes loaded Cu2O based electrocatalyst 79 4.3 Linear sweep voltammetry for carbon nanotubes loaded CuO based electrocatalyst . 81 4.3.1 Comparative analysis of Linear Sweep Voltammetry results based on 30% Copper oxides loading on CNT .82 4.4 Faradic Efficiency 83 4.4.1 Detailed analysis of Faradic Efficiency results .85 4.5 Chronoamperometry Analysis . 86 CHPTER 5 Density Functional Theory 88 5.1. Quantum Mechanical Modeling . 88 5.2. The Khon-Sham molecular orbital (MO) model 89 5.3. Simulation Method . 90viii Chapter 6 Conclusion & Recommendations .93 6.1 Conclusion 93 6.2 Recommendations 94 References 95 Appendix 106 Internal standard method of calibration 106 Vitae . 108ix LIST OF TABLES Table 2-1: Periodic table of elements tested for CO2 reduction at -2.2 V vs SCE in .05M Potassium bicarbonate solution KHCO3 at low temperature condition [44] 13 Table 2-2: Current efficiency for CO2 reduction products at -2.2V vs SCE in potassium bicarbonate (.05M KHCO3)[44] . 15 Table 2-3: Summery of different electrocatalyst and their role on current density and .faradic efficiency . 38 Table 5-1: Calculated Band gaps for Cu2O and Cu2O supported CNTs . 90x LIST OF FIGURES Figure 2-1: IR adsorption spectra of adsorb species methoxy and formats on catalyst .surface of clean Cu(111) and ZnCu+(111) during formation of methanol by hydrogenation at 343k and 1 atm[38] . 9 Figure 2-2: Development process of hole (h+) and e- upon UV irradiation by photo .catalyst [51] 19 Figure 2-3: Time dependence effect on methanol formation for titanium and titanium loaded Cu [57] . 21 Figure 2-4: Structure of Cu2O [66]. 29 Figure 3-1: Working electrode 49 Figure 3-2: Platinum counter electrode . 49 Figure 3-3: Reference Ag/AgCl electrode 50 Figure 3-4: Poly carbonate made electrochemical cell with two compartments separated .by nafion membrane for electrochemical reduction of CO2 53 Figure 4-1: SEM image of 10% CuO supported CNT catalyst 59 Figure 4-2: SEM image of 20% CuO supported CNT catalyst 60 Figure 4-3: SEM image of 30% CuO supported CNT catalyst 60 Figure 4-4: SEM image of 40% CuO supported CNT catalyst 61 Figure 4-5: SEM image of 50% CuO supported CNT catalyst 61 Figure 4-6: SEM image of 10% Cu2O supported CNT catalyst . 63 Figure 4-7: SEM image of 20% Cu2O supported CNT catalyst . 63 Figure 4-8: SEM image of 30% Cu2O supported CNT catalyst . 64 Figure 4-9: SEM image of 40% Cu2O supported CNT catalyst . 64xi Figure 4-10: SEM image of 50% Cu2O supported CNT catalyst . 65 Figure 4-11: EDX image of 10% Cu2O supported CNT catalyst . 66 Figure 4-12: EDX image of 40% Cu2O supported CNT catalyst . 67 Figure 4-13: EDX image of 20% CuO supported CNT catalyst 68 Figure 4-14: EDX image of 50% CuO supported CNT catalyst 69 Figure 4-15: XRD pattern for CuO supported CNT catalyst 71 Figure 4-16: XRD pattern for Cu2O supported CNT catalyst . 71 Figure 4-17: Thermogravimetric curves for Cu2O supported CNT catalysts . 73 Figure 4-18: Raman spectra of CuO supported CNT catalysts . 74 Figure 4-19: Raman spectra of Cu2O supported CNT catalysts . 75 Figure 4-20: Adsorption-desorption isotherm for CNT without loading . 76 Figure 4-21: TEM image of 10% CuO supported CNT catalyst 77 Figure 4-22: TEM image of 50% CuO supported CNT catalyst 77 Figure 4-23: TEM image of 10% Cu2O supported CNT catalyst . 78 Figure 4-24: TEM image of 50% Cu2O supported CNT catalyst . 78 Figure 4-25: LSV profiles for Cu2O supported CNT in CO2 saturated electrolyte 80 Figure 4-26: LSV profiles for CuO supported CNT in CO2 saturated electrolyte 82 Figure 4-27: LSV profiles for CNT loaded with 30% Cu2O and CuO in CO2 saturated .electrolyte . 83 Figure 4-28: Faradic Efficiency of Methanol formation . 84 Figure 4-29: Current responses for Cu2O supported CNTS at constant potential in CO2 .saturated electrolyte . 87 Figure 5-1: Optmized structure of Cuprous oxide (Cu2O) P type semiconductor 91xii Figure 5-2: Optimized structure of Cu2O supported carbon nanotube . 92xiii LIST OF ABBREVIATIONS CNTs : Carbon nanotubes Pt : Platinum Ag/AgCl : Silver/Silver Chloride LSV : Linear Sweep Voltammetry DFT : Density Functional Theory SHE : Standard Hydrogen Electrode XRD : X-ray-Diffraction TEM : Transmission Electron Microscopy EDX : Energy Dispersive X-ray TGA : Thermo Gravimetric Analysis SEM : Scanning Electron Microscopy MWCNT : Multi walled Carbon Nanotubes HER : Hydrogen Evolution Reaction CuO : Cupric Oxide Cu2O : Cuprous Oxide ACF : Activated Carbon Fiber SCE : Standard Calomel Electrode
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل رسالة ماجستير بعنوان Electrochemical Reduction of Co2 رابط مباشر لتنزيل رسالة ماجستير بعنوان Electrochemical Reduction of Co2
|
|