Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Computational Techniques for Structural Health Monitoring الأربعاء 25 أغسطس 2021, 4:48 pm | |
|
أخواني في الله أحضرت لكم كتاب Computational Techniques for Structural Health Monitoring Srinivasan Gopalakrishnan, Massimo Ruzzene, Sathyanarayana Hanagud
و المحتوى كما يلي :
Contents Part I Introductory Concepts in Structural Health Monitoring 1 Introduction 3 1.1 Overview on Structural Health Monitoring 3 1.1.1 Why Do We Need Structural Health Monitoring? . 3 1.1.2 Basic Elements of SHM Systems . 5 1.1.3 Levels of Structural Health Monitoring . 9 1.1.4 State-of-Art and Technological Needs 10 1.2 Dynamics-Based Structural Health Monitoring 14 1.2.1 Passive SHM . 15 1.2.2 Classification of Inspection Techniques Based on Frequency Range of Analysis . 16 1.2.3 Vibration-Based Techniques 17 1.2.4 Guided Waves Inspection 19 1.2.5 Ultrasonics and Nonlinear Ultrasound 20 1.3 Sensing and Actuation Strategies . 21 1.3.1 Piezoelectric Actuators and Sensors . 21 1.3.2 Fiber Optics Sensors 25 1.3.3 Laser Vibrometer 29 1.4 Modeling and Simulation Techniques for SHM . 31 1.4.1 The Importance of Modeling in Structural Health Monitoring 31 1.4.2 Finite Difference Techniques 32 1.4.3 Finite Element Method 33 1.4.4 Boundary Element Method . 34 1.4.5 Spectral Finite Element Method 34 1.4.6 Perturbation Techniques . 36 1.5 Organization of the Book 37 References . 38 ix2 Fundamentals Concepts in Elasticity, Mechanics and Wave Propagation 41 2.1 Introduction 41 2.2 Basic Concepts in Elasticity . 41 2.2.1 Description of Motion . 41 2.2.2 Strain 44 2.2.3 Strain–Displacement Relations . 46 2.2.4 Stress 48 2.2.5 Constitutive Relations . 50 2.2.6 Elastic Symmetry 52 2.3 Governing Equations of Motion and the Solution Methods . 54 2.3.1 Solution Procedures in Linear Theory of Elasticity . 56 2.3.2 Plane Problems in Elasticity 59 2.4 Introduction to Theory of Composites 60 2.4.1 Theory of Laminated Composites . 60 2.4.2 Stress–Strain Relation for a Lamina with Arbitrary Orientation of Fibers . 66 2.5 Introduction to Wave Propagation in Structures . 69 2.5.1 Spectral Analysis 70 2.6 Characteristics of Waves in Anisotropic Media . 74 2.7 Governing Equations for Beams and Plates 75 2.7.1 Governing Equation for an Elementary Beam 76 2.7.2 Governing Differential Equation for a Higher Order Beam 77 2.7.3 Governing Equations for a Composite Plate 79 2.8 Spectrum and Dispersion Relations 81 2.8.1 Efficient Computation of the Wavenumber and Wave Amplitude . 81 2.8.2 Spectrum and Dispersion Relation for an Elementary Beam 84 2.8.3 Spectrum and Dispersion Relation for a Higher Order Beam 86 2.8.4 Spectrum and Dispersion Relation for an Anisotropic Plate 89 References . 94 3 Signal Processing Techniques . 97 3.1 Integral Transforms 97 3.1.1 Fourier Transforms . 97 3.1.2 Fourier Series 99 3.1.3 Discrete Fourier Transform . 101 3.1.4 Wavelet Transforms 103 3.1.5 Wavelet-Based Numerical Solutions of Wave Equations . 109 x Contents3.1.6 Comparative Advantages and Disadvantages of Different Transforms 109 3.2 Signal Processing Issues . 110 3.2.1 Wraparound Problems . 110 3.2.2 Signal Processing of Sampled Waveforms . 116 3.2.3 Artificial Dispersion in Wavelet Transform 117 3.2.4 Excitation Signals and Wave Dispersion 126 3.3 Frequency/Wavenumber Analysis . 128 3.3.1 Analysis of a One-Dimensional Propagating Wave . 130 3.3.2 Analysis of 2D Wave Propagation 134 3.3.3 Numerical Examples: Wave Propagation in a Damaged Rod . 138 3.3.4 Numerical Examples: Wave Propagation in a Homogeneous Medium . 143 3.3.5 Frequency/Wavenumber Filtering for Mode Separation 144 References . 153 Part II Computational Simulation Techniques for Structural Health Monitoring 4 Application of the Finite Element Method in SHM . 157 4.1 Overview and Basic Principles . 157 4.2 Modeling Issues in FEM . 159 4.3 Damage Modeling Using FEM . 164 4.3.1 Stiffness Reduction Method . 164 4.3.2 Duplicate Node Method . 165 4.3.3 Kinematics Based Method 166 4.4 Numerical Examples 168 4.4.1 Static and Free Vibration Analysis of a Damaged Cantilever Beam Using DNM . 168 4.4.2 Response Analysis of a Cantilever Composite Beam with Different Damage Types . 170 4.5 Finite Element Modeling Suggestions 172 4.6 Modeling Pitfalls in FEM for SHM and Their Remedies . 173 References . 174 5 Spectral Finite Element Method . 177 5.1 The Need for Spectral FEM in SHM . 177 5.1.1 General Formulation Procedure: Fourier Transform Based SFEM. . 178 5.1.2 General Formulation Procedure: Wavelet Transform Based SFEM . 180 Contents xi5.2 Spectral Elements for Rods and Beams . 182 5.2.1 Non-dispersive Isotropic Rod: FFT Based Spectral Element Formulation . 182 5.2.2 Non-dispersive Isotropic Rod: Wavelet Transform Based Spectral Element Formulation 184 5.2.3 Dispersive Isotropic Timoshenko Beams-FFT Based Spectral Element Formulation 184 5.2.4 Composite Beams-FFT Based Spectral Element Formulation 186 5.2.5 Higher Order Composite Beam-FFT Based Spectral Element Formulation . 188 5.3 Spectral Elements for 2D Composite Layers-FFT Based Spectral Element Formulation . 190 5.3.1 Finite Layer Element (FLE) . 195 5.3.2 Infinite Layer (Throw-Off) Element (ILE) . 196 5.3.3 Expressions for Stresses and Strains . 197 5.3.4 Prescription of Force Boundary Conditions 197 5.3.5 Determination of Lamb Wave Modes 198 5.4 Anisotropic Plate-FFT Based Spectral Element Formulation 199 5.4.1 Finite Plate Element 200 5.4.2 Semi-infinite or Throw-Off Plate Element . 201 5.5 Numerical Examples 202 5.5.1 Wave Transmission and Scattering Through an Angle-Joint 202 5.5.2 Wave Propagation in 2D Portal Frame . 205 5.5.3 Propagation of Surface and Interfacial Waves in a Composite Layer . 207 5.5.4 Propagation of Lamb Wave . 211 5.5.5 Wave Propagation in a Composite Plate with Ply-Drop 214 5.6 Conclusions 216 References . 216 6 Simplified Spectral Models for Damaged Waveguides . 219 6.1 Need for Spectral Element Damage Models in Structural Health Monitoring . 219 6.2 Review of Simplified Models for Structural Defects 220 6.3 Modeling of Single Delamination or Horizontal Cracks . 221 6.3.1 Wave Scattering in a Delaminated Beam Using Wavelet Spectral Elements . 226 6.3.2 Effect of Wave Scattering Due to Delamination at Ply-drops 229 xii Contents6.4 Modeling of Fiber Breakage and Vertical Cracks 230 6.4.1 Interface Equilibrium of Forces 232 6.4.2 Assembly of the Element Internal Waveguides . 233 6.4.3 Modeling Dynamic Contact Between Crack Surfaces 234 6.4.4 Modeling of Surface Breaking Cracks 236 6.4.5 Distributed Constraints at the Interfaces Between Sub-Laminates and Hanging Laminates . 237 6.4.6 Wave Scattering Due to Transverse Cracks 239 6.4.7 Sensitivity of the Fiber Breakage Location and Configuration 240 6.5 Modeling of Structures with Multiple Horizontal Cracks or Delaminations . 241 6.5.1 Wave Scattering from Delamination: Comparison with 2D FEM . 246 6.5.2 Computational Efficiency of FSFEM Compared to FEM . 247 6.6 Modeling of Corrosion Pits . 248 6.6.1 Wave Propagation Response Due to Corrosion Pits . 250 6.7 Modeling of Material Degradations . 253 6.7.1 Experimental Degraded Model (EDM) . 254 6.7.2 Average Degraded Model 259 6.7.3 Wave Scattering in a Degraded Composite Beam Using ADM 262 6.8 Modeling of Vertical Cracks in 2D Waveguides 263 6.8.1 Flexibility Along the Crack . 266 6.8.2 Scattering Due to a Transverse Crack 267 6.9 Conclusions 269 References . 270 7 Perturbation Methods for Damaged Structures 273 7.1 Perturbation Methods for Notched Structures . 273 7.2 Modal Analysis of Damaged Plates . 274 7.2.1 Governing Equations 274 7.2.2 Perturbation Solution . 277 7.2.3 Fourier Series Solution of e1 Equations . 278 7.2.4 Strain Energy Ratio for Damage Localization 281 7.2.5 Effect of Notch Damage on the Plate Modal Properties 283 7.2.6 Notch Damage Localization Through the Strain Energy Ratio . 285 7.2.7 Effect of Line Damage on the Plate Modal Properties 287 7.3 Analysis of Wave Propagation in Notched Beams Through Spectral FE Solution 289 Contents xiii7.4 Governing Equations 290 7.4.1 Spectral Finite Element Discretization 300 7.5 Wave Propagation in Notched Beams: Numerical Examples . 302 7.5.1 Technique Validation: FSFEM Versus FE Predictions 302 7.5.2 FSFEM and Modal Superposition Results . 304 7.5.3 Time Domain Results . 305 7.5.4 Frequency Domain Results . 310 References . 311 8 Bridging Scale Analysis of Wave Propagation in Heterogeneous Structures with Imperfections . 313 8.1 Overview . 313 8.2 Theoretical Background . 315 8.2.1 Coarse and Fine Scale Discretization and Bridging Matrices 315 8.2.2 Multiscale Lagrangian 316 8.2.3 Reduction of the Degrees of Freedom 317 8.2.4 Time Domain Formulation . 318 8.2.5 Frequency Domain Formulation . 319 8.3 Results for Time-Domain Bridging 321 8.3.1 Application to a One-Dimensional Rod 321 8.3.2 Homogenized Bi-material Rod with Imperfections 325 8.3.3 Energy-Based Time Integration Scheme 331 8.3.4 Propagation of In-plane Waves in a 2D Elastic Domain 332 8.4 Results for Frequency-Domain Bridging . 339 8.4.1 Time Domain Spectral Element Discretization 339 8.4.2 Rod 340 8.4.3 Damaged Timoshenko Beam 340 8.4.4 Two Dimensional Waveguides . 344 8.5 Conclusions 347 References . 348 9 Modeling of Actuators and Sensors for SHM . 349 9.1 Introduction 349 9.2 Modeling of Lamb Wave Generation 350 9.2.1 Governing Equations 351 9.2.2 Harmonic Far Field Response . 353 9.2.3 Actuator Directivity 355 9.2.4 Example: Circular Actuator . 355 9.2.5 Experimental Validation . 358 9.2.6 Finite Element Evaluation of the Interface Stresses . 359 xiv Contents9.2.7 Example: Circular Patch . 362 9.2.8 Rectangular Isotropic Piezo Patch 364 9.3 Beamforming Through One-Dimensional Phased Arrays: A Quick Overview . 364 9.3.1 Response Due to a Single Component 366 9.3.2 Array Response . 367 9.3.3 Beam Steering Strategies 368 9.4 Two Dimensional Arrays for Frequency Based Beam Steering . 372 9.4.1 Application to SV Waves in a Membrane . 374 9.4.2 Application to Guided Waves in Thin Plates . 383 9.5 Modeling of Lamb Wave Sensors 391 9.5.1 Plate Configuration and Piezoelectric Constitutive Relations 392 9.5.2 Voltage Generated by Piezo Sensors of Arbitrary Shape . 394 9.5.3 Examples of Directivities for Simple Geometries . 397 9.5.4 Frequency Steerable Acoustic Transducer Periodic Array . 399 References . 403 Part III Computational Methodologies for Damage Detection and Quantification 10 Computational Techniques for Damage Detection, Classification and Quantification . 407 10.1 Overview . 407 10.2 A General Introduction to Vibration-Based Techniques . 408 10.2.1 Early Techniques Based on Natural Frequency Shifts 408 10.2.2 Mode Shape Analysis . 410 10.2.3 Mode Shape Curvature Changes 410 10.3 Damage Measure Based on Energy Functional Distributions . 411 10.3.1 Formulation for Beams and Plates 412 10.3.2 Spline Interpolation of Operational Deflection Shapes 414 10.3.3 Numerical Results on Beams . 416 10.3.4 Numerical Results on Plates 418 10.3.5 Experimental Results on Beams . 421 10.3.6 Experimental Results on Plates 426 10.4 Wave Propagation Techniques: Time Domain Damage Measure 429 10.4.1 Theoretical Background . 430 10.4.2 Numerical Examples: Wave Propagation in a Homogeneous Medium 433 10.4.3 Experimental Results: Aluminum Plate 435 Contents xv10.5 Phase Gradient and Conversion Coefficients Evaluation for Damage Localization and Quantification . 436 10.5.1 Simplified Description of a Multi-Modal Wave . 437 10.5.2 Phase Gradient for Damage Localization 437 10.5.3 Reflection, Transmission and Conversion Coefficients for Damage Quantification 439 10.5.4 Application to Simulated Data 440 10.5.5 Application to Experimental Data 446 10.6 Damage Force Indicator Technique . 450 10.6.1 Identification of Single Delamination Through Damage Force Indicator . 452 10.6.2 Identification of Multiple Delamination Through Damage Force Indicator . 453 10.6.3 Sensitivity of Damage Force Indicator Due to Variation in Delamination Size 454 10.6.4 Sensitivity of Damage Force Indicator Due to Variation in Delamination Depth . 457 10.7 Summary . 459 References . 459 11 Use of Soft Computing Tools for Damage Detection 463 11.1 Genetic Algorithms 463 11.1.1 A Brief Introduction to Genetic Algorithms . 463 11.1.2 Genetic Algorithm Process for Damage Detection and Definitions . 466 11.1.3 Objective Functions in GA for Delamination Identification . 468 11.1.4 Case Studies with a Cantilever Beam 472 11.1.5 Identification of Delamination Location, Size and Depth 476 11.2 Artificial Neural Networks . 478 11.2.1 Simple Model of Neuron . 478 11.2.2 Types of Activation Function . 480 11.2.3 Multilayer Feedforward Networks 481 11.2.4 Neural Network Integrated with SFEM 482 11.2.5 Numerical Results and Discussion 487 11.3 Summary . 490 References . 493 Index . Index A Acoustic emission, 15 Acoustic tomography, 12 Activation function bi-polar sigmoidal function, 486 piecewise linear function, 480 sigmoid function, 481 threshold function, 480 types, 480 Active sensors piezoelectric, 21 PVDF, 5 PZT, 5 TERFENOL-D, 5 Actuator circular, 355, 362, 385 directivity, 355 piezoceramic, 126, 426 rectangular, 364 surface bonded, 350 Actuator array plate response, 388 Aliasing, 112, 117, 178 Artificial Neural Network (ANN), 478 back propagation error, 487 effect of noise, 489 multiple layer feed forward networks, 479, 481 single layer feed forward networks, 479 Artificial dispersion, 117, 125 Averaged degraded model, 260 Axial–Flexural coupling, 85 B b-splines, 432 Beam forming algorithms, 373 Beam steering 2D phased arrays, 372 frequency based steering, 370 linear phase delay, 369 strategies, 368 Beltrami–Mitchell equations, 58 Bessel function, 322, 356 Boundary element method, 33, 157, 349 fundamental solutions, 34 Bragg wavelength, 28 Bridging scale method, 314 1D rod time domain formulation, 321 2D elastic medium, 332 bi-material rod with imperfections, 325 bridging matrices, 315 energy based time integration scheme, 331 frequency domain formulation, 319 reduction of degrees of freedom, 317 shape functions, 316 time domain formulation, 318 time domain spectral element, 339 Bulk waves, 431 C Cauchy’s stress tensor, 49 Christoffel symbol, 75 Circulant matrix, 120, 124 Classical plate theory, 79, 264 Companion matrix, 82, 91 Compatibility equations, 58 C (cont.) Composites material property determination, 61 micromechanics, 61 Computational efficiency of FSFEM, 247 Condition based monitoring, 6 Constitutive relations, 50, 69 elastic symmetry, 52 Hooke’s law, 51 isotropic system, 53 monoclinic system, 52 orthotropic system, 53 piezoelectric material, 362 triclinic system, 52 Contractional mode, 87 Corrosion pit, 248, 250 Curvature mode, 281–282, 284, 286–287, 413 Cut-off frequency, 74, 88, 195, 386 D Damage detection vibration based, 407 wave propagation based, 407 Damage force indicator, 450, 452, 457 multiple delaminations detection, 453 single delamination detection, 452 variation in delamination depth, 457 variation in delamination size, 454 Damage force vector, 451, 452 Damage localization, 448 phase gradient, 436, 437, 441 Daubechies basis function, 110 Daubechies wavelets, 106, 109, 110 Decimation factor, 416, 432 Deformation gradient, 42, 43 Description of motion, 41 Differential equation weak form, 32 Dirac delta function, 32, 99, 132, 198, 267, 276, 280, 298, 363, 441 Directional sensing, 391 Dispersion relation, 70, 74, 81 composite plate, 89 elementary beam, 84 higher order beam, 86 Dispersive wave, 70, 81 Distributed dynamic contact, 167 Doppler shift, 29 Duplicate node method, 164–165 Dynamic stiffness matrix, 179, 454 2D composite layer, 196 beams, 186 rods, 183 E Eigen solvers Jacobi–Davidson Method, 83 Krylov method, 83 QZ algorithm, 83, 91 Eigenfunctions orthogonal property, 279 Energy functional, 41 Energy harvesting systems, 12 Energy method, 41 Engineering strain, 44 Equations of motion, 54 Equivalent single layer theory, 220 Eulerian coordinates, 46 Evanescent mode, 71, 74 F FEM, 8, 31, 33, 157, 349 coarse scale, 317 damage models, 164 direct time integration, 34 fine scale, 317 interface stresses evaluation, 359 mode superposition, 34 modeling issues, 159 modeling pitfalls, 173 modeling suggestions, 172 plane strain model, 451 Fiber optic sensors, 5, 7, 11, 21, 25 bio-medical, 26 chemical, 26 EPFI, 27 extrensic, 26–27 FBG, 27–28 interferometric, 26 intrensic, 26 modulation, 26 physical, 26 Finite difference, 32, 157 central difference, 32 explicit method, 32, 35 implicit method, 33, 35 First order shear deformation theory, 77, 184, 249, 289 Flexibility function, 263, 266 Force boundary condition, 197 Fourier transform, 70, 97, 109–110, 438 2D, 129, 132, 364, 376–377 3D, 19, 129, 354 Continuous, 97, 110, 177, 178 DFT, 70, 97, 99, 101, 111, 178, 319 FFT, 35, 101, 99, 110, 177, 356 Fourier series, 99, 110, 179, 198 496 Indexhigher dimensional, 19 inverse FFT, 321 multidimensional, 144 short time, 19 windowed, 104 Frequency response function, 31, 35, 310 Frequency/wavenumber domain, 179–180 Frequency/wavenumber filtering 1D, 130 2D, 132 mode separation, 144 FSFEM general procedure, 178 G GA alleles, 467 chromosome, 464, 466 crossover, 465 crossover probability, 465 damage location & size identification, 475 damage location identification, 473 damage location, size & depth identification, 476 damage size identification, 474 genes, 467 genotype, 467 introduction, 463 locus, 467 mutation, 465 objective function, 464 phenotype, 467 population, 464 probability of mutation, 465 process, 466 Galerkin approximation, 273 Gauss–Lobatto–Legendre point, 339 Governing equation composite plate, 79 electro-mechanical system, 362 elementary beam, 76 higher order beam, 77 isotropic damaged plate, 274 lamb wave modeling, 350 notched beam, 289 SV waves, 374 weak form, 300 Green’s function, 378 Group speed, 70, 72, 89 Guided ultrasonic waves, 429 Guided wave, 11, 16, 18, 21, 24 thin plates, 383 tomography, 21 H Haar wavelet, 103 Hamilton’s principle, 75, 77–78, 80, 290, 293, 298 Hankel function, 357, 379 Harmonic far field response, 353 Heaviside function, 276–277, 293 Helmhöltz equation, 109 Helmholtz decomposition, 75, 198, 351 Hilbert transform, 137, 143 Hilbert–Huang transform, 19 I Integral transforms, 97 Interdigitated electrodes, 22 Inverse problem, 463 J Jacobian, 44 K Kinematics based method, 164, 166, 220, 254 material degradation, 260 modeling of delaminations, 166 modeling of fiber breakage, 167 Kirchoff plate theory, 418 L Lagrange equations, 316 Lagrange multiplier, 361–362 Lagrange polynomials, 339 Lamb wave, 220, 241, 429, 437 antisymmetric, 22, 352, 355, 358, 386, 436 composites, 190 directional excitation, 384 dispersion, 211, 443 experimental validation, 358 modeling, 350 modes determination, 198 non-linear optimization, 211 propagation, 211 reflection/conversion coefficients, 440, 441, 452 symmetric, 22, 352, 355, 358, 386, 436–437, 447 Lamb waves, 440 Lambda matrix, 91 Laminated composite, 61 theory, 60 Index 497L (cont.) Laser vibrometer, 5, 7, 14, 18–19, 29, 129, 144, 274, 358, 410, 412, 415, 422–423, 429, 448 Latent eigenvector, 82 Layerwise theories, 220 Legendre polynomial, 339 Line damage modal properties, 287 Linear combiner output, 479 Linearization of PEP, 83 Littlewood–Paley wavelet, 104 Loading broad band, 127, 162, 226, 239, 246, 263, 269, 443, 455, 473, 479 tone burst, 127, 160–161, 226, 240, 246, 251–252, 258–259, 262, 303, 305, 309, 340, 342, 388, 441, 447 Logarithmic strain, 44 Love–Kirkchoff layered theory, 360 M Macro fiber composite, 22 Mass spring lattice model, 143, 435 Material degradation, 219 Matrix crack, 254, 260 Matrix cracking, 219 Matrix debonding, 254 Mean squared error, 486 MEMS, 7 Modal analysis damaged plates, 274 Modal assurance criterion, 412 Mode conversion, 220, 407, 436–437, 448–449 estimation, 443, 448 Mode-II fracture, 242 Molecular dynamics, 316 Multi-layer perceptron, 19, 482 Multiscale lagrangian, 316 N Navier’s equation, 57 Neuron, 478 activiation function, 479 adder, 479 simple model, 478 synapses, 478 Newmark method, 139, 239 Non destructive evaluation, 6, 12, 14–15, 20, 249, 313, 368, 372 Non-dispersive wave, 70 Nonlinear ultrasound, 20 Normal stress, 49 Notch damage modal properties, 283 Notch type damage, 274, 408, 411, 436 Nyquist frequency, 103, 110, 117, 182, 184, 247, 452, 469, 483, 487 O Objective functions, 463, 468, 470 displacement based, 468 power flow based, 470 Operational deflection shape, 408, 414–416, 420, 423, 429, 433 Orthotropic material, 65 P P wave, 351, 366 Partial wave technique, 190, 198 Penalty parameter, 238 Permittivity matrix, 360 Perturbation analysis, 283, 410 Perturbation solution, 277 Fourier series solution, 278, 284 Perturbation technique, 36, 273 Phase speed, 72 Phased arrays 1D, 364 2D quadrilateral, 379 2D rectangular, 375 Piezocomposite, 362 Piezocomposites, 22 Piezoelectric coupling matrix, 360 Piezoelectric discs array, 383–384 Piezoelectric patches, 349 Piezoelectric transducers, 431 Pitting corrosion, 248 Plane strain, 59, 260, 366, 440 Plane stress, 59, 65–66, 260, 262 Polynomial eigenvalue problem, 82, 87, 185 Preface, v Principal direction, 69 Propagating mode, 71, 74, 87 Q Quasi P wave, 75, 195 Quasi S wave, 75, 195 R Random decrement technique, 15 Rayleigh Lamb wave dispersion, 354 498 IndexRayleigh–Ritz solution, 273 Recurrent networks, 479 Refractive index, 27, 28, 28 Representative volume, 62 Residue theorem, 356 Rigid links, 166, 221, 230 Rule of mixtures, 63, 325, 328, 330 S S wave, 351, 366 Selection procedure, 465 deterministic selection, 466 enlarged sampling, 466 mixed selection, 466 regular sampling, 466 stochastic selection, 466 Semi analytical finite element, 349 Sensitivity fiber break configuration, 240 SH waves, 353 Shear stress, 49 SHM diagnosis, 5, 9 dynamics based, 14, 16, 407 elements, 5, 7 guided wave based, 25, 373 levels, 9 modeling, 31 need, 3 off-line, 10 on-line, 10 overview of SHM, 3 passive and active, 14 prognosis, 5, 9 sensing and actuation strategies, 21 vibration based, 17 Signal leakage, 117 Signal periodicity, 102 Signal processing issues, 110 Simplified damage models review, 220 Sinc function, 98, 101 Singular value decomposition, 83 Spectral element, 157, 158 2D layer element, 191 2D layer throw-off element, 196 notched beam, 289 anisotropic plate, 199 anisotropic plate throw-off element, 201 average degraded model, 260, 483 beam throw-off element, 187 corroded region, 248 dynamic contact element, 234 experimental degraded model, 254 fiber breakage, 230 FSFEM for isotropic beams, 184 FSFEM for composite beams, 186 FSFEM for higher order beam, 188 FSFEM for isotropic rods, 182 higher order beam throw-off element, 190 material degradations, 253 multiple delamination, 241 need in SHM, 177, 219 notched beam, 289 plate, 221, 264 plate with vertical cracks, 263 rod throw-off element, 183 single delamination, 221 surface breaking crack, 235 WSFEM isotropic rods, 184 WSFEM procedure, 180 Spectral element method, 351 Spectral finite element, 8, 31, 34 dynamic stiffness matrix, 35 throw-off element, 35 Spectral power flow, 470 Spectrum relation, 70, 74, 81, 87 Spline basis function, 415 Spline function, 423 Spline interpolation, 414, 432 Stiffness reduction method, 164 Strain energy ratio, 281, 288, 413 cumulative, 282 damage index, 411 damage index-beams, 416 damage index-plates, 421 experiments on beam, 421 experiments on plates, 426 notch damage, 287 Strain tensors Eulerian, 45, 47 Lagrangian, 46–47 Stress intensity factor, 10 Surface-breaking crack, 235 SV waves, 374, 384 membrane, 374 Synaptic weights, 478, 481, 483, 485–487 System identification, 157, 463 T Theory of elasticity, 41 Time domain spectral element 2D waveguides, 344 analysis of a rod, 340 damaged Timoshenko beam, 340 shape functions, 339, 345 Index 499T (cont.) Time frequency transforms, 19 Time integration central difference scheme, 440 Newmark scheme, 323 Time kernel history function, 318 Time signal window rectangular, 117 Gaussian, 117, 127 Hanning, 117, 127, 132, 140, 149, 151, 161, 303, 358, 441, 447, 448 Tukey, 148 Timoshenko beam theory, 225 Total internal reflection, 27 Transformation matrix, 68 Traveling salesman problem, 471 True strain, 44 U Ultrasonic inspection, 20 V Variational principles, 32 Visco-elasticity, 35 W Wave amplitude, 180, 195 Wave matrix, 180 Wave propagation 2D composite layer medium, 207 2D portal frame, 205 degraded composites using ADM, 262 response due to corrosion pits, 251 angled joint, 202 composite plate with ply-drop, 214 damaged rod, 138 degraded composites using EDM, 258 delaminated beam, 226 delamination at ply-drop, 229 fiber breakage, 238 homogeneous medium, 143, 435 introduction, 69 notched beams, 302 plate with vertical crack, 267 single delamination using multiple delamination model, 246 spectral analysis, 70 Wave propagation technique damage index theoretical background, 430 time domain damage index, 430 Wavefield, 16, 25, 30 Wavefield data, 129 Waveguide, 70 Wavelet transform, 19, 70, 103, 177, 412 non-periodic boundary conditions, 121 periodic boundary conditions, 119 Wavenumber, 70, 73 Weighted residual technique, 32 Wigner–Ville distributions, 19 Wireless sensors, 8 Wraparound problem
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Computational Techniques for Structural Health Monitoring رابط مباشر لتنزيل كتاب Computational Techniques for Structural Health Monitoring
|
|