Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Large Strain Finite Element Method - A Practical Course الجمعة 17 سبتمبر 2021, 2:16 pm | |
|
أخواني في الله أحضرت لكم كتاب Large Strain Finite Element Method A Practical Course Antonio Munjiza Queen Mary, University of London Esteban Rougier Los Alamos National Laboratory, US Earl E. Knight Los Alamos National Laboratory, US
و المحتوى كما يلي :
Contents Preface xiii Acknowledgements xv PART ONE FUNDAMENTALS 1 1 Introduction 3 1.1 Assumption of Small Displacements 3 1.2 Assumption of Small Strains 6 1.3 Geometric Nonlinearity 6 1.4 Stretches 8 1.5 Some Examples of Large Displacement Large Strain Finite Element Formulation 8 1.6 The Scope and Layout of the Book 13 1.7 Summary 13 2 Matrices 15 2.1 Matrices in General 15 2.2 Matrix Algebra 16 2.3 Special Types of Matrices 21 2.4 Determinant of a Square Matrix 22 2.5 Quadratic Form 24 2.6 Eigenvalues and Eigenvectors 24 2.7 Positive Definite Matrix 26 2.8 Gaussian Elimination 26 2.9 Inverse of a Square Matrix 28 2.10 Column Matrices 30 2.11 Summary 323 Some Explicit and Iterative Solvers 35 3.1 The Central Difference Solver 35 3.2 Generalized Direction Methods 43 3.3 The Method of Conjugate Directions 50 3.4 Summary 63 4 Numerical Integration 65 4.1 Newton-Cotes Numerical Integration 65 4.2 Gaussian Numerical Integration 67 4.3 Gaussian Integration in 2D 70 4.4 Gaussian Integration in 3D 71 4.5 Summary 72 5 Work of Internal Forces on Virtual Displacements 75 5.1 The Principle of Virtual Work 75 5.2 Summary 78 PART TWO PHYSICAL QUANTITIES 79 6 Scalars 81 6.1 Scalars in General 81 6.2 Scalar Functions 81 6.3 Scalar Graphs 82 6.4 Empirical Formulas 82 6.5 Fonts 83 6.6 Units 83 6.7 Base and Derived Scalar Variables 85 6.8 Summary 85 7 Vectors in 2D 87 7.1 Vectors in General 87 7.2 Vector Notation 91 7.3 Matrix Representation of Vectors 91 7.4 Scalar Product 92 7.5 General Vector Base in 2D 93 7.6 Dual Base 94 7.7 Changing Vector Base 95 7.8 Self-duality of the Orthonormal Base 97 7.9 Combining Bases 98 7.10 Examples 104 7.11 Summary 108 8 Vectors in 3D 109 8.1 Vectors in 3D 109 8.2 Vector Bases 111 8.3 Summary 114 9 Vectors in n-Dimensional Space 117 9.1 Extension from 3D to 4-Dimensional Space 117 9.2 The Dual Base in 4D 118 viii Contents9.3 Changing the Base in 4D 120 9.4 Generalization to n-Dimensional Space 121 9.5 Changing the Base in n-Dimensional Space 124 9.6 Summary 127 10 First Order Tensors 129 10.1 The Slope Tensor 129 10.2 First Order Tensors in 2D 131 10.3 Using First Order Tensors 132 10.4 Using Different Vector Bases in 2D 134 10.5 Differential of a 2D Scalar Field as the First Order Tensor 137 10.6 First Order Tensors in 3D 141 10.7 Changing the Vector Base in 3D 142 10.8 First Order Tensor in 4D 143 10.9 First Order Tensor in n-Dimensions 147 10.10 Differential of a 3D Scalar Field as the First Order Tensor 149 10.11 Scalar Field in n-Dimensional Space 152 10.12 Summary 153 11 Second Order Tensors in 2D 155 11.1 Stress Tensor in 2D 155 11.2 Second Order Tensor in 2D 158 11.3 Physical Meaning of Tensor Matrix in 2D 159 11.4 Changing the Base 161 11.5 Using Two Different Bases in 2D 163 11.6 Some Special Cases of Stress Tensor Matrices in 2D 167 11.7 The First Piola-Kirchhoff Stress Tensor Matrix 168 11.8 The Second Piola-Kirchhoff Stress Tensor Matrix 169 11.9 Summary 174 12 Second Order Tensors in 3D 175 12.1 Stress Tensor in 3D 175 12.2 General Base for Surfaces 179 12.3 General Base for Forces 182 12.4 General Base for Forces and Surfaces 184 12.5 The Cauchy Stress Tensor Matrix in 3D 186 12.6 The First Piola-Kirchhoff Stress Tensor Matrix in 3D 186 12.7 The Second Piola-Kirchhoff Stress Tensor Matrix in 3D 188 12.8 Summary 189 13 Second Order Tensors in nD 191 13.1 Second Order Tensor in n-Dimensions 191 13.2 Summary 200 PART THREE DEFORMABILITY AND MATERIAL MODELING 201 14 Kinematics of Deformation in 1D 203 14.1 Geometric Nonlinearity in General 203 14.2 Stretch 205 14.3 Material Element and Continuum Assumption 208 Contents ix14.4 Strain 209 14.5 Stress 213 14.6 Summary 214 15 Kinematics of Deformation in 2D 217 15.1 Isotropic Solids 217 15.2 Homogeneous Solids 217 15.3 Homogeneous and Isotropic Solids 217 15.4 Nonhomogeneous and Anisotropic Solids 218 15.5 Material Element Deformation 221 15.6 Cauchy Stress Matrix for the Solid Element 225 15.7 Coordinate Systems in 2D 227 15.8 The Solid- and the Material-Embedded Vector Bases 228 15.9 Kinematics of 2D Deformation 229 15.10 2D Equilibrium Using the Virtual Work of Internal Forces 231 15.11 Examples 235 15.12 Summary 238 16 Kinematics of Deformation in 3D 241 16.1 The Cartesian Coordinate System in 3D 241 16.2 The Solid-Embedded Coordinate System 241 16.3 The Global and the Solid-Embedded Vector Bases 243 16.4 Deformation of the Solid 244 16.5 Generalized Material Element 246 16.6 Kinematic of Deformation in 3D 247 16.7 The Virtual Work of Internal Forces 249 16.8 Summary 255 17 The Unified Constitutive Approach in 2D 257 17.1 Introduction 257 17.2 Material Axes 259 17.3 Micromechanical Aspects and Homogenization 260 17.4 Generalized Homogenization 263 17.5 The Material Package 264 17.6 Hyper-Elastic Constitutive Law 265 17.7 Hypo-Elastic Constitutive Law 266 17.8 A Unified Framework for Developing Anisotropic Material Models in 2D 267 17.9 Generalized Hyper-Elastic Material 267 17.10 Converting the Munjiza Stress Matrix to the Cauchy Stress Matrix 274 17.11 Developing Constitutive Laws 279 17.12 Generalized Hypo-Elastic Material 288 17.13 Unified Constitutive Approach for Strain Rate and Viscosity 292 17.14 Summary 293 18 The Unified Constitutive Approach in 3D 295 18.1 Material Package Framework 295 18.2 Generalized Hyper-Elastic Material 295 18.3 Generalized Hypo-Elastic Material 299 x Contents18.4 Developing Material Models 302 18.5 Calculation of the Cauchy Stress Tensor Matrix 302 18.6 Summary 312 PART FOUR THE FINITE ELEMENT METHOD IN 2D 315 19 2D Finite Element: Deformation Kinematics Using the Homogeneous Deformation Triangle 317 19.1 The Finite Element Mesh 317 19.2 The Homogeneous Deformation Finite Element 317 19.3 Summary 326 20 2D Finite Element: Deformation Kinematics Using Iso-Parametric Finite Elements 327 20.1 The Finite Element Library 327 20.2 The Shape Functions 327 20.3 Nodal Positions 330 20.4 Positions of Material Points inside a Single Finite Element 331 20.5 The Solid-Embedded Vector Base 332 20.6 The Material-Embedded Vector Base 334 20.7 Some Examples of 2D Finite Elements 337 20.8 Summary 340 21 Integration of Nodal Forces over Volume of 2D Finite Elements 343 21.1 The Principle of Virtual Work in the 2D Finite Element Method 343 21.2 Nodal Forces for the Homogeneous Deformation Triangle 348 21.3 Nodal Forces for the Six-Noded Triangle 352 21.4 Nodal Forces for the Four-Noded Quadrilateral 353 21.5 Summary 355 22 Reduced and Selective Integration of Nodal Forces over Volume of 2D Finite Elements 357 22.1 Volumetric Locking 357 22.2 Reduced Integration 358 22.3 Selective Integration 359 22.4 Shear Locking 362 22.5 Summary 364 PART FIVE THE FINITE ELEMENT METHOD IN 3D 365 23 3D Deformation Kinematics Using the Homogeneous Deformation Tetrahedron Finite Element 367 23.1 Introduction 367 23.2 The Homogeneous Deformation Four-Noded Tetrahedron Finite Element 368 23.3 Summary 377 24 3D Deformation Kinematics Using Iso-Parametric Finite Elements 379 24.1 The Finite Element Library 379 24.2 The Shape Functions 379 Contents xi24.3 Nodal Positions 381 24.4 Positions of Material Points inside a Single Finite Element 382 24.5 The Solid-Embedded Infinitesimal Vector Base 383 24.6 The Material-Embedded Infinitesimal Vector Base 386 24.7 Examples of Deformation Kinematics 387 24.8 Summary 392 25 Integration of Nodal Forces over Volume of 3D Finite Elements 393 25.1 Nodal Forces Using Virtual Work 393 25.2 Four-Noded Tetrahedron Finite Element 396 25.3 Reduce Integration for Eight-Noded 3D Solid 399 25.4 Selective Stretch Sampling-Based Integration for the Eight-Noded Solid Finite Element 400 25.5 Summary 401 26 Integration of Nodal Forces over Boundaries of Finite Elements 403 26.1 Stress at Element Boundaries 403 26.2 Integration of the Equivalent Nodal Forces over the Triangle Finite Element 404 26.3 Integration over the Boundary of the Composite Triangle 407 26.4 Integration over the Boundary of the Six-Noded Triangle 408 26.5 Integration of the Equivalent Internal Nodal Forces over the Tetrahedron Boundaries 409 26.6 Summary 412 PART SIX THE FINITE ELEMENT METHOD IN 2.5D 415 27 Deformation in 2.5D Using Membrane Finite Elements 417 27.1 Solids in 2.5D 417 27.2 The Homogeneous Deformation Three-Noded Triangular Membrane Finite Element 419 27.3 Summary 438 28 Deformation in 2.5D Using Shell Finite Elements 439 28.1 Introduction 439 28.2 The Six-Noded Triangular Shell Finite Element 440 28.3 The Solid-Embedded Coordinate System 441 28.4 Nodal Coordinates 442 28.5 The Coordinates of the Finite Element’s Material Points 443 28.6 The Solid-Embedded Infinitesimal Vector Base 444 28.7 The Solid-Embedded Vector Base versus the Material-Embedded Vector Base 447 28.8 The Constitutive Law 449 28.9 Selective Stretch Sampling Based Integration of the Equivalent Nodal Forces 449 28.10 Multi-Layered Shell as an Assembly of Single Layer Shells 455 28.11 Improving the CPU Performance of the Shell Element 456 28.12 Summary 462 Index 46 Contents Preface xiii Acknowledgements xv PART ONE FUNDAMENTALS 1 1 Introduction 3 1.1 Assumption of Small Displacements 3 1.2 Assumption of Small Strains 6 1.3 Geometric Nonlinearity 6 1.4 Stretches 8 1.5 Some Examples of Large Displacement Large Strain Finite Element Formulation 8 1.6 The Scope and Layout of the Book 13 1.7 Summary 13 2 Matrices 15 2.1 Matrices in General 15 2.2 Matrix Algebra 16 2.3 Special Types of Matrices 21 2.4 Determinant of a Square Matrix 22 2.5 Quadratic Form 24 2.6 Eigenvalues and Eigenvectors 24 2.7 Positive Definite Matrix 26 2.8 Gaussian Elimination 26 2.9 Inverse of a Square Matrix 28 2.10 Column Matrices 30 2.11 Summary 323 Some Explicit and Iterative Solvers 35 3.1 The Central Difference Solver 35 3.2 Generalized Direction Methods 43 3.3 The Method of Conjugate Directions 50 3.4 Summary 63 4 Numerical Integration 65 4.1 Newton-Cotes Numerical Integration 65 4.2 Gaussian Numerical Integration 67 4.3 Gaussian Integration in 2D 70 4.4 Gaussian Integration in 3D 71 4.5 Summary 72 5 Work of Internal Forces on Virtual Displacements 75 5.1 The Principle of Virtual Work 75 5.2 Summary 78 PART TWO PHYSICAL QUANTITIES 79 6 Scalars 81 6.1 Scalars in General 81 6.2 Scalar Functions 81 6.3 Scalar Graphs 82 6.4 Empirical Formulas 82 6.5 Fonts 83 6.6 Units 83 6.7 Base and Derived Scalar Variables 85 6.8 Summary 85 7 Vectors in 2D 87 7.1 Vectors in General 87 7.2 Vector Notation 91 7.3 Matrix Representation of Vectors 91 7.4 Scalar Product 92 7.5 General Vector Base in 2D 93 7.6 Dual Base 94 7.7 Changing Vector Base 95 7.8 Self-duality of the Orthonormal Base 97 7.9 Combining Bases 98 7.10 Examples 104 7.11 Summary 108 8 Vectors in 3D 109 8.1 Vectors in 3D 109 8.2 Vector Bases 111 8.3 Summary 114 9 Vectors in n-Dimensional Space 117 9.1 Extension from 3D to 4-Dimensional Space 117 9.2 The Dual Base in 4D 118 viii Contents9.3 Changing the Base in 4D 120 9.4 Generalization to n-Dimensional Space 121 9.5 Changing the Base in n-Dimensional Space 124 9.6 Summary 127 10 First Order Tensors 129 10.1 The Slope Tensor 129 10.2 First Order Tensors in 2D 131 10.3 Using First Order Tensors 132 10.4 Using Different Vector Bases in 2D 134 10.5 Differential of a 2D Scalar Field as the First Order Tensor 137 10.6 First Order Tensors in 3D 141 10.7 Changing the Vector Base in 3D 142 10.8 First Order Tensor in 4D 143 10.9 First Order Tensor in n-Dimensions 147 10.10 Differential of a 3D Scalar Field as the First Order Tensor 149 10.11 Scalar Field in n-Dimensional Space 152 10.12 Summary 153 11 Second Order Tensors in 2D 155 11.1 Stress Tensor in 2D 155 11.2 Second Order Tensor in 2D 158 11.3 Physical Meaning of Tensor Matrix in 2D 159 11.4 Changing the Base 161 11.5 Using Two Different Bases in 2D 163 11.6 Some Special Cases of Stress Tensor Matrices in 2D 167 11.7 The First Piola-Kirchhoff Stress Tensor Matrix 168 11.8 The Second Piola-Kirchhoff Stress Tensor Matrix 169 11.9 Summary 174 12 Second Order Tensors in 3D 175 12.1 Stress Tensor in 3D 175 12.2 General Base for Surfaces 179 12.3 General Base for Forces 182 12.4 General Base for Forces and Surfaces 184 12.5 The Cauchy Stress Tensor Matrix in 3D 186 12.6 The First Piola-Kirchhoff Stress Tensor Matrix in 3D 186 12.7 The Second Piola-Kirchhoff Stress Tensor Matrix in 3D 188 12.8 Summary 189 13 Second Order Tensors in nD 191 13.1 Second Order Tensor in n-Dimensions 191 13.2 Summary 200 PART THREE DEFORMABILITY AND MATERIAL MODELING 201 14 Kinematics of Deformation in 1D 203 14.1 Geometric Nonlinearity in General 203 14.2 Stretch 205 14.3 Material Element and Continuum Assumption 208 Contents ix14.4 Strain 209 14.5 Stress 213 14.6 Summary 214 15 Kinematics of Deformation in 2D 217 15.1 Isotropic Solids 217 15.2 Homogeneous Solids 217 15.3 Homogeneous and Isotropic Solids 217 15.4 Nonhomogeneous and Anisotropic Solids 218 15.5 Material Element Deformation 221 15.6 Cauchy Stress Matrix for the Solid Element 225 15.7 Coordinate Systems in 2D 227 15.8 The Solid- and the Material-Embedded Vector Bases 228 15.9 Kinematics of 2D Deformation 229 15.10 2D Equilibrium Using the Virtual Work of Internal Forces 231 15.11 Examples 235 15.12 Summary 238 16 Kinematics of Deformation in 3D 241 16.1 The Cartesian Coordinate System in 3D 241 16.2 The Solid-Embedded Coordinate System 241 16.3 The Global and the Solid-Embedded Vector Bases 243 16.4 Deformation of the Solid 244 16.5 Generalized Material Element 246 16.6 Kinematic of Deformation in 3D 247 16.7 The Virtual Work of Internal Forces 249 16.8 Summary 255 17 The Unified Constitutive Approach in 2D 257 17.1 Introduction 257 17.2 Material Axes 259 17.3 Micromechanical Aspects and Homogenization 260 17.4 Generalized Homogenization 263 17.5 The Material Package 264 17.6 Hyper-Elastic Constitutive Law 265 17.7 Hypo-Elastic Constitutive Law 266 17.8 A Unified Framework for Developing Anisotropic Material Models in 2D 267 17.9 Generalized Hyper-Elastic Material 267 17.10 Converting the Munjiza Stress Matrix to the Cauchy Stress Matrix 274 17.11 Developing Constitutive Laws 279 17.12 Generalized Hypo-Elastic Material 288 17.13 Unified Constitutive Approach for Strain Rate and Viscosity 292 17.14 Summary 293 18 The Unified Constitutive Approach in 3D 295 18.1 Material Package Framework 295 18.2 Generalized Hyper-Elastic Material 295 18.3 Generalized Hypo-Elastic Material 299 x Contents18.4 Developing Material Models 302 18.5 Calculation of the Cauchy Stress Tensor Matrix 302 18.6 Summary 312 PART FOUR THE FINITE ELEMENT METHOD IN 2D 315 19 2D Finite Element: Deformation Kinematics Using the Homogeneous Deformation Triangle 317 19.1 The Finite Element Mesh 317 19.2 The Homogeneous Deformation Finite Element 317 19.3 Summary 326 20 2D Finite Element: Deformation Kinematics Using Iso-Parametric Finite Elements 327 20.1 The Finite Element Library 327 20.2 The Shape Functions 327 20.3 Nodal Positions 330 20.4 Positions of Material Points inside a Single Finite Element 331 20.5 The Solid-Embedded Vector Base 332 20.6 The Material-Embedded Vector Base 334 20.7 Some Examples of 2D Finite Elements 337 20.8 Summary 340 21 Integration of Nodal Forces over Volume of 2D Finite Elements 343 21.1 The Principle of Virtual Work in the 2D Finite Element Method 343 21.2 Nodal Forces for the Homogeneous Deformation Triangle 348 21.3 Nodal Forces for the Six-Noded Triangle 352 21.4 Nodal Forces for the Four-Noded Quadrilateral 353 21.5 Summary 355 22 Reduced and Selective Integration of Nodal Forces over Volume of 2D Finite Elements 357 22.1 Volumetric Locking 357 22.2 Reduced Integration 358 22.3 Selective Integration 359 22.4 Shear Locking 362 22.5 Summary 364 PART FIVE THE FINITE ELEMENT METHOD IN 3D 365 23 3D Deformation Kinematics Using the Homogeneous Deformation Tetrahedron Finite Element 367 23.1 Introduction 367 23.2 The Homogeneous Deformation Four-Noded Tetrahedron Finite Element 368 23.3 Summary 377 24 3D Deformation Kinematics Using Iso-Parametric Finite Elements 379 24.1 The Finite Element Library 379 24.2 The Shape Functions 379 Contents xi24.3 Nodal Positions 381 24.4 Positions of Material Points inside a Single Finite Element 382 24.5 The Solid-Embedded Infinitesimal Vector Base 383 24.6 The Material-Embedded Infinitesimal Vector Base 386 24.7 Examples of Deformation Kinematics 387 24.8 Summary 392 25 Integration of Nodal Forces over Volume of 3D Finite Elements 393 25.1 Nodal Forces Using Virtual Work 393 25.2 Four-Noded Tetrahedron Finite Element 396 25.3 Reduce Integration for Eight-Noded 3D Solid 399 25.4 Selective Stretch Sampling-Based Integration for the Eight-Noded Solid Finite Element 400 25.5 Summary 401 26 Integration of Nodal Forces over Boundaries of Finite Elements 403 26.1 Stress at Element Boundaries 403 26.2 Integration of the Equivalent Nodal Forces over the Triangle Finite Element 404 26.3 Integration over the Boundary of the Composite Triangle 407 26.4 Integration over the Boundary of the Six-Noded Triangle 408 26.5 Integration of the Equivalent Internal Nodal Forces over the Tetrahedron Boundaries 409 26.6 Summary 412 PART SIX THE FINITE ELEMENT METHOD IN 2.5D 415 27 Deformation in 2.5D Using Membrane Finite Elements 417 27.1 Solids in 2.5D 417 27.2 The Homogeneous Deformation Three-Noded Triangular Membrane Finite Element 419 27.3 Summary 438 28 Deformation in 2.5D Using Shell Finite Elements 439 28.1 Introduction 439 28.2 The Six-Noded Triangular Shell Finite Element 440 28.3 The Solid-Embedded Coordinate System 441 28.4 Nodal Coordinates 442 28.5 The Coordinates of the Finite Element’s Material Points 443 28.6 The Solid-Embedded Infinitesimal Vector Base 444 28.7 The Solid-Embedded Vector Base versus the Material-Embedded Vector Base 447 28.8 The Constitutive Law 449 28.9 Selective Stretch Sampling Based Integration of the Equivalent Nodal Forces 449 28.10 Multi-Layered Shell as an Assembly of Single Layer Shells 455 28.11 Improving the CPU Performance of the Shell Element 456 28.12 Summary 462 Index 46 Index acceleration, 37, 38, 42, 43, 85, 90, 94, 343 a-conjugate, 51 addition of matrices, 16 additive decomposition, 203, 259, 418 angle stretch, 269, 270, 289, 290, 297–9, 301, 307, 450 anisotropic, 8, 10, 13, 203, 218, 220–222, 238, 246, 255, 259, 260, 263–5, 267, 272, 280, 293, 299, 307, 312, 313, 321, 375, 419, 438–40, 458, 460, 462 anisotropic constitutive law, 313 anisotropic elastic material, 307 anisotropic material element, 220, 264, 265, 458, 460 anisotropic material nonlinearity, 10 anisotropic materials, 10, 13, 203, 218, 220–222, 246, 255, 259, 260, 263–5, 272, 312, 321, 375, 419, 439, 458, 460 a-orthogonal, 49, 53, 55, 57 a-orthonormal column matrices, 32 associativity of the summation, 87 assumption of continuum, 209, 214, 261, 263, 264, 321 axial stretches, 297 base vectors, 91–3, 95, 96, 98, 99, 102, 111–14, 117, 122, 123, 130, 136, 141, 144, 147, 152, 170, 179, 182, 191, 192, 228, 231, 243, 244, 255, 260, 321, 326, 332, 333, 361, 375, 376, 384, 389, 405, 423, 427, 428, 430, 439, 445, 447, 449 bending moment, 77, 78 cartesian coordinate system, 44, 227, 241, 242, 318, 320, 321, 330, 368, 382 Cauchy material element, 223, 225–7, 231, 232, 234, 238, 249–55, 302, 303, 306, 313, 343, 409, 430, 449 Cauchy stress, 167, 168, 173, 186, 188, 203, 225–7, 231, 235–8, 250, 252, 255, 258, 266, 267, 274, 278–80, 299, 302, 313, 326, 343, 349, 353, 355, 363, 377, 378, 392, 396, 399, 406, 407, 409, 412, 429–31, 435, 438, 449, 455, 462 central difference, 35, 37, 38, 40–42, 62 change of angle, 257 change of volume, 258, 357 commutativity, 89, 90 components of stress tensor matrix, 185components of the Cauchy stress, 226, 227, 299, 407, 409, 449, 455 composite elements, 361, 362, 403 composite triangle, 359, 360, 403, 404, 407 computational mechanics, 14, 168, 174, 209, 215, 256, 259, 294, 314 conditional stability, 41 conjugate directions method, 13, 50, 51, 53, 60, 63 conjugate gradient method, 62, 63 constant strain finite element, 325 constitutive law, 13, 213, 231, 258–60, 264–7, 279, 292, 293, 295, 296, 299, 312, 313, 340, 343, 363, 364, 377, 392, 435, 438, 449 contact, 14, 204, 362, 367, 403 continuity conditions, 327 continuum mechanics, 174, 209, 214, 238, 256, 259, 261, 294, 313, 341, 355, 378, 392, 401, 413, 438, 462 convergence, 50, 357, 363 co-rotational formulation, 203, 293, 302, 313, 418, 438 crack, 14, 157, 175, 176, 209, 214 cross method, 48 current configuration, 204, 265, 324 current position, 204, 209, 214, 225, 227, 229–32, 235, 236, 238, 244, 246, 249, 250, 255, 259, 266–8, 275, 288, 292, 296, 319, 325, 331, 334, 340, 343, 344, 371, 374, 376–8, 382, 387, 389, 391, 392, 404, 409, 421, 424–7, 430, 431, 443, 446–50, 458, 461 current volume, 268, 275, 288, 296, 345, 351, 397, 411, 431, 453 deformation-dependent, 275 deformation independent, 228 deformation-independent matrices, 267 deformation invariant, 293, 312, 313, 378 deformation kinematics, 13, 249, 250, 255, 260, 264, 267, 279, 288, 292, 295, 319, 321, 323, 325, 329, 331, 333, 335, 337, 339–41, 367, 369, 371, 373, 375, 377–9, 381, 383, 385, 387, 389, 391, 392, 438 deformation-objective, 312 deformed solid element, 223, 302 derivation of a scalar field, 372 derivation of the shape functions, 368 determinant, 22–4, 28, 428, 429 diagonal matrix, 21, 60 differential, 35, 63, 73, 78, 86, 108, 115, 127, 137, 139, 149, 150, 152, 154, 174, 189, 200, 209, 214 calculus, 108, 115, 127, 154, 174, 189, 200, 209 equations, 35, 63, 73, 78, 86, 209 differentiating, 137 differentiation, 373, 374, 426, 431, 433, 446 direction of the force, 178 direction of the surface 168, 178 discretization, 37, 317, 318 displacement vector, 104, 130, 131 divergence, 47 dot product, 30, 44, 51, 52, 55, 92, 93, 436 dual base vectors, 98, 99, 170, 405 dual bases, 949, 105, 111, 112, 118, 123, 127, 136, 170, 405, 410, 411, 435 duality condition, 99, 119, 123 dynamic finite element analysis, 35, 256, 294, 313, 326, 341, 355, 392, 401, 413, 438, 462 dynamic relaxation, 13, 37, 43, 367 edge stretches, 269, 272, 277, 288, 289, 297, 300, 307 eigenmatrix, 25, 26 eigenvalues, 24–6, 39, 40, 61, 364 eight-noded quadrilateral finite element, 329 eight-noded solid finite element, 381 elastic constants, 280, 284, 287, 288, 302, 308, 309 engineering definition of stress, 174 engineering strain, 6, 209–12 equilibrium, 3–6, 36, 43, 75, 76, 78, 231, 232, 235, 238, 250, 255, 256, 273, 343–5, 357, 417 equilibrium equations, 343, 357, 417 equilibrium of forces, 3, 4 equilibrium of moments, 273 equivalent nodal forces, 13, 343, 344, 346, 347, 350, 353, 397, 398, 403, 404, 406, 408–10, 412, 430, 434, 435, 449, 452, 453, 462 Euler-Almansi strain, 210–212 exact solution, 6, 45, 47, 52 explicit, 13, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 203, 204, 326, 341, 355, 364, 367, 378, 392, 401, 413, 421, 438, 443, 462 464 Indexexplicit dynamic, 367, 378, 392, 401, 413 explicit integration, 37 explicit iterative static formulation, 367 external damping, 42 finite element library, 327, 379 finite strain deformability theory, 203 first derivative, 140, 151 first order tensor, 13, 129, 131–5, 137–41, 143, 145, 147, 149–51, 153, 154, 158, 159, 177 first order tensor to an n-dimensional space, 147 first Piola-Kirchhoff, 168, 169, 172, 181, 186–8, 258, 275–80, 305, 306 force base, 179, 182, 196, 198 force components, 106, 162, 250 four gauss points integration, 71 four-noded quadrilateral finite elements, 328, 358, 359, 362 fourth dimension, 117, 191 Gaussian elimination, 26, 28, 29, 62, 367 Gaussian integration, 65 Gaussian numerical integration, 67, 352, 355 Gauss integration point, 353–5, 358, 399, 400, 404, 408, 434, 452 Gauss point, 68, 70–72, 348, 352, 355, 358–64, 397, 400, 401, 404, 405, 408, 409, 452, 453 Gauss-seidel method, 46–8, 53 general base, 12, 98, 100, 102–4, 106, 108, 111, 114, 117, 120, 124, 136, 140, 142, 151, 167, 179, 182, 184 general base for forces and surfaces, 184 general force base, 182, 196 generalized material element, 222–5, 231, 238, 246, 247, 249, 255, 257–60, 264, 265, 267–9, 271, 273–7, 279–81, 288–90, 293, 295–300, 302, 303, 307, 308, 312, 321, 324–6, 334, 343, 361, 363, 364, 386, 389, 392, 419, 439, 440, 449 generalized material-embedded base vectors, 247–9, 260 generalized stress matrix components, 275 generalized stretch, 280, 292 general virtual displacement, 235, 254 global base, 98–100, 109, 111, 113, 161, 164, 166, 167, 177–82, 192, 196, 324, 373, 425, 430 global base vector, 111, 430 global coordinates, 229, 232, 244, 320, 330, 331, 336, 369, 373, 374, 382, 385, 420–423, 432, 443, 458 global derivatives, 349, 431 global orthonormal base, 98, 101, 111, 134, 141, 168, 170, 176, 186, 187, 191, 196, 219, 226, 299, 302, 334, 343, 386 global orthonormal vector base, 144 global vector base, 165, 260, 321 Green-Lagrange strain, 210–212 Green-Naghdi rate, 259, 267 heterogeneous solid, 217 homogeneous and anisotropic solids, 218, 238 homogeneous and isotropic solid, 219 homogeneous deformation triangle, 317 homogeneous deformation finite element, 317, 438, 453 homogeneous internal forces, 175, 176 homogenization, 260, 262–4, 272, 273 homogenized material element, 321 Hooke’ s law, 213, 281, 282, 284–7, 309–11, 313 hyper-elastic material, 13, 258, 259, 264, 265, 267, 280, 295 hyper-lines, 48, 49 hyper-point, 44, 45 hyper-space, 44 hyper-surfaces, 45 hypo-elastic formulation, 13, 258, 259, 264, 266, 288, 299 identity matrix, 21 implicit equilibrium formulation, 4 implicit formulation, 42 inertia forces, 36, 43, 250, 256, 343 infi-meter, 77, 207, 208, 221, 243, 259, 373, 393, 439 infinitesimal base, 321, 323, 324, 445, 449 infinitesimally small, 5–7, 75, 77, 139, 150, 176, 206–8, 221, 222, 224, 227, 228, 232, 233, 236, 243, 246, 249, 251, 252, 259, 284, 321, 373, 393, 419, 423, 430, 439 infinitesimally small vector, 150 infinitesimal vicinity, 7, 176, 210, 231, 238, 243, 247, 255, 333, 372, 375, 376, 458, 460 Index 465initial geometry, 3, 330, 382 initial position, 204, 206, 209, 223, 224, 227, 236, 245, 248, 249, 260, 266, 267, 269, 295, 297, 321, 322, 330, 333, 334, 339–41, 371, 373, 376, 377, 382, 386, 388–90, 392, 421, 423, 425, 427, 428, 442, 446, 448, 456, 459 inner product, 30, 110 instability, 5, 6, 60–62 integrating over the volume, 394 integrating the stress over boundaries, 403 integration scheme, 37, 38, 40–42, 62 internal damping, 42, 43 internal forces, 3–5, 7, 13, 35, 36, 38, 59, 75, 77, 155–8, 160, 162, 164, 168, 173, 175–7, 184, 185, 187, 188, 225–7, 231–4, 236–8, 249–55, 258, 261, 267, 271–4, 276, 277, 279, 292, 293, 299–302, 304–8, 312, 313, 343, 344, 358, 378, 392–4, 406–9, 412, 417, 430, 436, 449, 452, 462 inverse transpose matrix, 100 iso-parametric finite elements, 329, 331, 333, 335, 337–9, 341 isotropic, 154, 217–19, 238, 256, 259, 263, 280, 281, 284, 285, 292–4, 307–9, 313 isotropic plane strain, 293 isotropic plane stress, 292 isotropic solid, 217–20, 238, 280, 299, 307, 308, 313 Jaumann rate, 203, 259, 267, 275 kinematic hardening, 259 kinematics of deformation, 203, 205, 207, 209, 211, 213, 214, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 267, 299, 340, 377, 449 Lagrange polynomials, 330 Lagrange shape functions, 330, 381 large displacement formulation, 6, 10 large displacements, 6, 8–10, 12, 13, 203, 343, 417, 418, 438, 440 formulation, 6, 10 and large strains, 440 small strain, 8 large strains, 6, 8, 10, 12, 203, 213, 214, 255, 312, 313, 417, 418, 440, 462 large strains large displacement shells, 10 linear mapping, 131–4, 141, 143, 144, 147, 153, 158, 163, 174, 176, 177, 181, 184, 192, 196, 225, 258 linear mapping of surfaces to forces, 158, 174 load, 3, 5, 43, 50–53, 155, 156, 175, 213, 417, 418, 421 local coordinates, 229, 244, 320, 325, 331, 336, 382, 385, 419–21 local derivatives, 349, 431 logarithmic strains, 210–212, 214, 280, 294, 307, 308, 313 lower triangular matrix, 21 mapping, 130–134, 141, 143, 144, 147, 153, 158, 163, 164, 174, 176, 177, 181, 184, 185, 192, 196, 225, 258 material axes, 218, 219, 259, 321, 326, 335 material element, 208, 214, 218, 221–7, 231, 232, 234, 238, 246, 247, 249–51, 253–5, 257–61, 264, 265, 267–9, 271, 273–7, 280, 281, 288–90, 293, 295–300, 302, 303, 306–8, 312, 313, 321, 324–6, 334, 343, 363, 364, 375, 378, 386, 389, 392, 394, 409, 419, 439, 440, 449, 458, 460 material-embedded infinitesimal base, 321 material-embedded vector base, 228, 231, 238, 247, 249, 323, 325, 375–7, 389, 392, 427, 429, 438, 439, 447, 448, 459 material model, 13, 14, 264, 267, 280, 301, 302, 307 material package, 13, 264–7, 268, 274, 278, 292, 293, 295, 296, 299, 302, 312, 313, 326, 355, 361, 363, 364, 377, 378, 392, 401, 430, 435, 449 material point, 7, 75, 76, 78, 168, 203–5, 217, 219, 221, 224–9, 231, 232, 235, 243, 244, 246, 247, 249–51, 255, 260, 264, 317–24, 326, 328, 329, 331–6, 340, 341, 344–6, 352, 364, 368, 369, 372, 375, 376, 382, 383, 385, 386, 389, 392, 393, 419–21, 423, 424, 427, 439, 440, 443, 444, 447, 449, 457 material properties, 218, 219, 377 matrices, 15–19, 21, 23, 25–7, 29–33, 50, 51, 53, 60, 62, 83, 94, 110, 114, 115, 121, 132–4, 141, 142, 153, 154, 167, 168, 170, 179, 186, 230, 258, 264, 267, 292, 326, 398 466 Indexmatrix algebra, 13, 16, 32, 108, 115, 127 matrix inversions, 367 matrix multiplication, 19, 108 mechanics of discontinua, 209 mesh, 317, 319, 327, 330, 357, 358, 363, 382 method of residuals, 75 microstructure, 209, 210, 261, 262 multiplication of matrices by a scalar, 18 multiplicative decomposition, 7, 8, 13, 203, 204, 214, 215, 239, 256, 259, 266, 267, 288–90, 292, 294, 300, 301, 313, 314, 367, 368, 418, 438, 462 Munjiza generalized material element, 222, 255, 312 n-dimensional space, 44, 117, 119, 121, 123, 125, 127, 147, 152, 200 nd space, 45, 49, 50, 127, 152, 154 Newton-Cotes integration, 65–7 nodal forces, 13, 343–5, 347–53, 355, 357, 359, 361, 363, 377, 378, 393, 395, 397–9, 401, 403–13, 430, 434, 435, 437, 438, 449, 452, 455, 462 non-cartesian coordinate system, 318, 320 non-homogeneous, 247 nonlinear algebraic equations, 13, 58 nonlinear elasticity, 213 nonlinearity, 6, 8, 10, 203, 235, 325, 412 nonlinear material laws, 364, 403 nonlinear materials, 10, 302 non-orthonormal bases, 101, 111, 168 numerical integration, 65, 67–9, 71–3, 352, 354, 355, 401 numerical integration of virtual work, 401 objective, 280, 293, 302, 313, 363 one Gauss point integration, 70, 405 one Gauss point numerical integration, 68 orthonormal base, 91–3, 97, 98, 101, 104, 106, 109, 111, 117, 120–122, 134, 139, 141, 158, 168, 170, 176, 186, 187, 195, 196, 219, 226, 299, 302, 343, 386 orthonormal column matrices, 32 orthonormal vector base, 127, 144, 155 parallelepiped, 246, 386 parallelization, 367 parallelogram-shaped infinitesimal material element, 222 physical meaning, 94, 102, 159, 160, 163, 173, 185, 222, 374 physical reality, 89, 131–3, 168, 185 plane strain, 284, 285, 287, 288, 293, 364 plane strain isotropic material, 284 plane stress, 281, 283, 284, 288, 292, 430, 435 plane stress formulation, 283 plastically, 213, 440 Poisson’s ratio, 288, 309 polygon, 89–91, 117, 118 polygon of vectors, 89, 90, 117, 118 positive definite matrix, 26, 50, 53, 63 potential energy method, 75 preconditioner, 61 preconditioning, 60, 61 previous position, 238, 245, 248, 260, 266, 288, 292, 325, 330, 333, 340, 341, 371, 374, 377, 382, 384, 388, 389, 391, 421, 424, 425, 427, 447, 448, 460, 461 principle of virtual work, 75, 78, 232, 250, 343–5, 352, 353, 355, 393, 412, 430, 438, 452 pure shear, 284, 287, 310 quadratic form, 24, 26, 62 rate of deformation, 330 rate of stretching, 292 reduced integration, 358, 359, 363, 399, 400 reference configuration, 204 representative sample, 262–4 representative volume, 261, 263, 272, 273, 321 residual, 53–7, 59–61, 75 resultant internal forces, 177, 188, 226, 258, 274, 299, 301, 302, 305, 406, 407, 409 rotated, 222, 257 rotation, 7, 8, 77, 222–4, 257, 280, 293, 302, 312, 440, 456 sampling points, 37, 364, 400, 401, 407, 412, 449–51 scalar field, 45, 137–40, 149–52, 154, 372 scalar function, 81, 82, 85 scalar graphs, 82, 85 scalar variable, 81–3, 85, 86, 204 scouting, 45 second order formulation, 6 Index 467second order tensors, 8, 13, 155, 157–61, 163, 165, 167, 169, 171, 173–5, 177, 179, 181, 183, 185–7, 189, 191, 193, 195, 197, 199, 200 second Piola-Kirchhoff stress tensor matrix, 169, 172, 188, 258 selective integration, 13, 357–61, 363, 364, 400, 403, 409 serendipity, 330, 381 serendipity shape functions, 330 shape function, 319, 320, 327, 328, 330, 331, 336, 337, 339–41, 344, 349, 368–70, 379, 381, 385, 387, 389, 393, 401, 412, 419, 420, 422, 431, 433, 438, 443, 446, 449, 452, 457 shear forces, 168 shear locking, 362–4, 399, 412, 449, 450, 460, 462 shear strain, 271, 363 shear stress, 155, 363, 449, 450 shear stretches, 460 shearing, 258, 271, 290, 297, 357 simply supported beam, 76–8 singular square matrix, 28 six-noded shell element, 440, 441, 449, 452, 462 six-noded triangle finite element, 328 slope, 62, 129–34, 137, 139, 140, 149, 151, 154 slope of the tangential line, 140, 151 slope of the tangential plane, 139, 140, 149 slope tensor, 129, 132–4, 154 small strain formulations, 271, 417 small strains, 6, 8–10, 203, 213, 271, 281–4, 286, 287, 309, 310, 313 solid-embedded coordinate lines, 374, 380, 381, 383 solid-embedded coordinate surfaces, 380, 381, 441 solid-embedded coordinate system, 227, 241, 242, 319, 328, 329, 353, 368, 369, 372, 419, 441, 444 solid-embedded infinitesimal vector base, 322, 332, 383 solid-embedded vector base, 228, 231, 243, 245, 247, 248, 322, 323, 325, 326, 332, 333, 339, 340, 372–7, 383, 384, 388–91, 425–7, 438, 445, 447, 458 spectral radius, 25, 40, 41, 367 speed, 50, 67, 81, 82, 85 square matrices, 16, 30 square matrix, 16, 21–3, 24, 26, 28, 30–32, 98, 99 square-shaped material element, 221, 222, 225 square-shaped solid body, 235, 236 stability, 5, 6, 38, 41, 256, 294, 313, 364 static equilibrium, 43 static problems, 43, 204, 256, 293, 421 static solutions, 37 stiffness matrix, 35, 36, 50, 204, 367 strain increments, 301 strain measures, 8, 209–12, 301, 307, 308 strain rate, 214, 292 stress distribution, 408, 412, 451 stress increments, 291 stress integration, 13, 408 stress sampling, 401, 407, 409, 451 stress-strain relationship, 213 stress tensor, 13, 155, 158–61, 163, 164, 167–9, 172–8, 180, 181, 184–9, 226, 227, 231, 238, 249, 250, 252, 255, 258, 265, 267, 272, 278, 279, 292, 293, 302, 305, 306, 313, 343, 349, 355, 363, 377, 378, 392, 394, 396, 399, 407, 409, 429, 430, 435, 438, 449, 455, 462 stress transformation, 302 stress updates, 275 stretch 7, 8, 13, 205, 206, 208–12, 214, 223, 224, 257, 259, 268–72, 288–90, 292, 293, 296–302, 359–61, 363, 364, 368, 400, 401, 407, 412, 417, 427, 439, 449–51, 460 stretching, 204, 206, 207, 209, 214, 223, 225, 255, 257, 258, 263, 266, 268–72, 288–92, 297–300, 312, 364, 451 stretching modes, 291, 298–300 structural elements, 42, 249, 261 subtraction of matrices, 17 surface base vectors, 192 surface’s base, 179–81, 186, 187, 192, 195, 198 symmetric matrix, 21, 26, 62 system of equations, 44–6, 62, 63, 367 tangential stiffness matrix, 204, 367 tangential vectors, 323 ten-noded tetrahedron, 380, 392 tensorial calculus, 13 tensor matrix, 159, 160, 163, 164, 167–9, 172, 173, 178, 181, 185–8, 194, 198, 468 Index226, 227, 231, 238, 250, 252, 255, 258, 265, 267, 272, 278, 292, 302, 305, 306, 313, 343, 349, 355, 363, 377, 378, 392, 394, 396, 399, 406, 407, 409, 429, 430, 435, 438, 449, 455, 462 tensor transformation, 133, 185 tetrahedron finite element, 367–71, 373, 375, 377, 379, 380, 392, 396, 409 theoretically exact, 6, 7, 13, 313 three points Newton-Cotes integration, 67 time integration, 38, 40–42, 62, 63 total virtual work, 235, 237, 238, 254, 345, 346, 394 transformation, 95, 133, 185, 302 translating, 225 translation, 7, 8, 203, 222, 257, 456 transposition of a matrix, 18 triangular finite element, 318, 320, 322, 327, 357, 435 Truesdell rate, 259, 267 two Gauss points numerical integration, 68 two points Newton-Cotes integration, 66 under-integrated, 358, 400 unified constitutive approach, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291–3, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313 uniformly distributed load, 155 unit length, 32, 207, 208, 332 unit length column matrix, 32 unit prefixes, 83, 84 unit set, 84, 85 unit-length, 206, 207 upper triangular matrix, 21 vector base, 93–7, 108, 111, 113, 114, 127, 131–4, 142, 144, 147, 153–5, 161, 164, 165, 167, 168, 172, 174, 178, 186, 218, 219, 221, 228, 230, 231, 238, 243, 245–9, 260, 321–3, 325, 326, 332–4, 339–41, 372–7, 383, 384, 386, 388–92, 405, 410, 419, 423, 425–7, 429, 438–40, 444–9, 458–60 vector of the dual base, 112, 123 vector transformation, 95 vector variable equations, 91 vertical displacement, 357 virtual displacement, 75–7, 78, 232–4, 236–8, 250–254, 344–6, 393, 394, 397, 409, 430, 452 virtual work, 75–8, 231–4, 236–8, 249–54, 256, 343–6, 348, 353, 355, 358, 363, 393, 394, 400, 401, 405, 407, 412, 430, 438, 452, 455, 462 virtual work of the internal forces, 232, 234, 236, 237, 394 viscosity, 14, 267, 292, 293 volume change, 269, 274, 286, 287, 357, 359, 362, 363 volumetric integration, 438 volumetric locking, 357, 358, 363, 400 volumetric strain, 281, 283, 286, 287, 309, 311 volumetric stretch, 7, 268, 269, 271, 288, 290, 296, 297, 301, 307, 360, 361, 363, 364, 400, 401, 407 Young’s modulus, 288, 309 zero energy modes, 358, 359, 363, 400 zero matrix,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Large Strain Finite Element Method - A Practical Course رابط مباشر لتنزيل كتاب Large Strain Finite Element Method - A Practical Course
|
|