Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Finite Element Analysis - With Numeric and Symbolic MatLAB الأربعاء 27 مارس 2024, 1:55 am | |
|
أخواني في الله أحضرت لكم كتاب Finite Element Analysis - With Numeric and Symbolic MatLAB John E Akin Rice University, USA
و المحتوى كما يلي :
Contents Preface v About the Author vii List of Examples xi List of Matlab Scripts xvii List of Useful Tables xxi 1. Overview 1 2. Calculus Review 33 3. Terminology from Differential Equations 59 4. Parametric Interpolation 69 5. Numerical Integration 117 6. Equivalent Integral Forms 145 7. Matrix Procedures for Finite Elements 167 8. Applications of One-Dimensional Lagrange Elements 205 9. Truss Analysis 317 10. Applications of One-Dimensional Hermite Elements 341 11. Frame Analysis 383 ixx Finite Element Analysis: With Numeric and Symbolic Matlab 12. Scalar Fields and Thermal Analysis 405 13. Elasticity 487 14. Eigenanalysis 537 15. Transient and Dynamic Solutions 597 Index 62 List of Examples Example 1.3-1 Boolean scatter of a column vector 8 Example 1.3-2 Inverse of a 2 × 2 matrix 9 Example 1.3-3 Matlab script to invert 3 × 3 matrix 10 Example 1.3-4 Multiplication of a matrix by its inverse 10 Example 1.3-5 Matlab script to solve a 2 × 2 linear system 11 Example 2.2-1 Variable Jacobian of a L3, in unit coordinates 37 Example 2.2-2 Variable Jacobian of a L3, in natural coordinates 38 Example 2.2-3 Moment integral of interpolated line force, L2 39 Example 2.2-4 Jacobian matrix in cylindrical coordinates 40 Example 2.2-5 Area of a rotated square by integration 41 Example 2.2-6 Jacobian matrix of a quadrilateral element 41 Example 2.2-7 Area calculation for the same quadrilateral 42 Example 2.2-8 Geometric constants of an arbitrary triangle 43 Example 2.3-1 Polar moment of inertia of rotated square 47 Example 2.4-1 Line integral with integration by parts 49 Example 2.4-2 Area integral with integration by parts (Greens theorem) 49 Example 2.4-3 Green’s theorem incorporates Neumann condition 51 Example 4.2-1 Interpolated value and slope using a four-noded line element, L4 79 xixii Finite Element Analysis: With Numeric and Symbolic Matlab Example 4.2-2 Change one value in Example 4.2-2 and graph with Matlab, L4 82 Example 4.2-3 Approximate and graph a circular arc using a four-noded line element, L4 84 Example 4.6-1 Exactly integrate the local area of a parametric triangle (T 3, or T 6, etc.) 99 Example 4.8-1 Shape of any edge of an eight-noded quadrilateral, Q8 or Q9 104 Example 4.9-1 Shape of any edge of an four-noded quadrilateral, Q4 106 Example 4.10-1 Integral of the solution over cubic line element, L4 108 Example 4.10-2 Moment of line pressure on linear line element, L2 109 Example 5.1-1 Numerical integration for length of a straight line, using L2 element 121 Example 5.1-2 Numerical integration for length of a straight line, using L4 element 122 Example 5.1-3 Numerical integration of interpolated quantity, using L4 element 125 Example 5.1-4 Numerical integration for moment of inertia of a line, using L2 element 127 Example 5.1-5 Three-point integration of the mass matrix of a L3 line element 130 Example 5.2-1 Four-point integration of local moment of inertia of a square, using Q4 138 Example 5.2-2 Area–Jacobian relation for straight sided triangles, L3 139 Example 5.2-3 Local polar moment of inertia of the unit triangle, L3 139 Example 6.2-1 Galerkin form matrices for first-order ODE 148 Example 6.2-2 Above analytic matrices for linear line element, L2 149 Example 6.2-3 Assembly of two of the above matrices, L2 151 Example 6.2-4 Insert numerical values & BC & solve above system, L2 152List of Examples xiii Example 6.2-5 Repeat above solution for quadratic line element, L3 154 Example 6.5-1 Apply Euler Theorem to extract two-dimensional Poisson Eq. and NBC 164 Example 7.2-1 Assembly (scatter) of six column source vectors, L2 176 Example 7.2-2 Form connection lists for seven nodes connected in two ways, T 3, Q4 177 Example 7.3-1 Assembly (scatter) with a non-sequential connection list, L3 181 Example 7.7-1 Write the constraint equation for an inclined two-dimensional roller support 190 Example 7.7-2 Prepare sample data for Matlab truss analysis 191 Example 7.7-3 Write the constraint equation for two geared torsional shafts 192 Example 7-8.1 Factor a 5 × 5 symmetric matrix into upper and lower triangles 194 Example 7.9-1 Establish skyline storage for banded 6 × 6 matrix 199 Example 7.10-1 Locate two terms in sparse matrix skyline format 202 Example 8.1-1 Element matrix integrals defined by ODE on a line 211 Example 8.1-2 Integrate internal source matrix for a quadratic line element, L3 212 Example 8.1-3 Form single element matrix equilibrium system for above ODE, L3 213 Example 8.1-4 Insert a Dirichlet BC and a secondary BC and solve matrix system, L3 215 Example 8.2-1 Chimney three layer wall one-dimensional temperatures and heat flux computed, L2 221 Example 8.2-2 Equilibrium of bar with mid-point load and support displacement, L2 225 Example 8.2-3 Exact solution hanging bar displacements and reactions, L3 228xiv Finite Element Analysis: With Numeric and Symbolic Matlab Example 8.2-4 Thermal stress and reactions in fixed–fixed bar, L3 230 Example 8.2-5 Three layer chimney with convection BC temperatures, and heat flux, L2 230 Example 8.2-6 Planar wall with convection on one side 232 Example 8.3-1 ODE source vector for linear internal source on a line, L3 247 Example 8.3-2 One element solution for linear internal source and two Dirichlet BCs, L3 249 Example 8.3-3 Linear solution for internal source, one Dirichlet, one Neumann BC, L3 251 Example 8.3-4 Two elements, internal source, one Dirichlet, one Neumann BC, L3 253 Example 8.3-5 One L2 ODE reaction for linear internal source and two Dirichlet BCs, L2 253 Example 8.3-6 Line conduction, convection matrices, two EBCs, temperature solution, L3 256 Example 8.3-7 Line conduction, line convection matrices, EBC, zero NBC, L3 259 Example 8.3-8 Line conduction, convection matrices, EBC, non-zero NBC, L3 261 Example 8.4-1 Five element convecting fin temperature, heat flux, convection loss, L2 265 Example 8.4-2 Five element one-dimensional convecting fin check of heat flux balance, L2 267 Example 8.4-3 Five element one-dimensional convecting fin temperatures with base heat flux input, L2 269 Example 8.4-4 Structural pile displacements analogous to convecting fin temperature 270 Example 8.6-1 Tapered conical shaft in torsion matrices by numerical integration 287 Example 8.6-2 Variable coefficient ODE gives non-symmetric matrices, Matlab solution 293 Example 8.6-3 Variable coefficient ODE element reactions for flux recovery 297 Example 8.7-1 Symbolic integration of linear taper axial bar stiffness matrix, L3 302 Example 8.7-2 Thermal stress (initial strain) in taper axial bar with fixed ends, L3 304List of Examples xv Example 9.1-1 Two-bar truss displacements and reactions, for point force, L2 323 Example 9.1-2 Two-bar truss, element axial displacements and reactions, L2 326 Example 9.1-3 Two-bar truss displacements and reactions, due to temperature change, L2 327 Example 9.1-4 Three-bar truss with inclined roller and point load, L2 329 Example 9.2-1 Sample data for a space truss, L2 333 Example 10.1-1 Least squares finite element Hermite form for second-order ODE, L2C1 342 Example 10.6-1 Quintic beam center deflection and reactions for end settlement, L3C1 361 Example 10.6-2 Fixed–fixed quintic beam, triangular load; deflections and reactions, L3C1 363 Example 10.6-3 Fixed–fixed two cubic beams, triangular load; deflections, reactions, L2C1 365 Example 10.6-4 Two-span continuous beam with line load, moment and shear, L2C1 366 Example 11.2-1 Pin–pin planar frame with line load, node deflections, reactions, F 2C1 391 Example 11.2-2 Same frame member results graphed, F 3C1 392 Example 11.2-3 Plane frame rotated member stiffness matrix, F 2C1 394 Example 11.2-4 Recover inclined member system reactions, F 2C1 395 Example 11.2-5 Verify above plane reactions using statics 395 Example 12.8-1 Jacobian matrix of two-dimensional quadrilateral, Q4 424 Example 12.8-2 Pressure gradient in two-dimensional quadrilateral with pressure data, Q4 425 Example 12.8-3 Pressure gradient in two-dimensional rectangle with pressure data, R4 427 Example 12.8-4 Pressure gradient along edge in Ex 12.8-2, L2 428 Example 12.8-5 Pressure gradient at centroid parallel to edge, Q4 429 Example 12.13-1 Temperatures in square with internal heat generation, T 3 465xvi Finite Element Analysis: With Numeric and Symbolic Matlab Example 12.13-2 Heat flux in square with internal heat generation, T 3 468 Example 12.13-3 Square temperature with two edge fluxes and two edge temperatures, L3 469 Example 12.13-4 Graph approximate diagonal temperature in above example 472 Example 14.3-1 Natural frequency of a bar with distributed and point masses, L2 544 Example 14.4-1 Effect of tension on string natural frequency, L3 548 Example 14.4-2 Matlab script for string vibration modes and frequencies, L3 548 Example 14.4-3 First two frequencies of fixed-free elastic bar, L3 555 Example 14.5-1 Matlab script for torsional vibrations of a fixed-free shaft, L3 557 Example 14.8-1 Buckling load for a two-bar truss, L2 569 Example 14.8-2 Buckling load for a fixed–pinned beam-column, L3C1 570 Example 14.8-3 Buckling of a fixed–pinned beam-column with spring support, L3C1 571 Example 14.8-4 Matlab script for buckling of fixed–pinned beam-column, L3C1 572 Example 14.9-1 Matlab script for buckling of fixed–pinned tensioned beam-column, L3C1 580 Example 14.12-1 Matlab script to find principal stresses for three-dimensional stress tensor 587 Example 14.12-2 Find maximum shear stress for three-dimensional stress tensor 588 Example 15.4-1 Transient solution of a symmetric conducting square, T 3 608 Example 15.5-1 Estimate the critical time step size for transient solution, L2 613List of Matlab Scripts Example 1.3-3 Inversion of 3 by 3 matrix 10 Example 1.3-5 Solve a linear 2 by 2 matrix system 11 Figure 4.2-2 Symbolic derivations of the quadratic line interpolation functions 74 Figure 4.2-6 Constant and linear results are included in quadratic interpolation 78 Figure 4.2-7 Placing interpolation functions in a script for a library of one-dimensional elements 79 Figure 4.2-11 A Matlab script to graph a cubic element (L4 C0) 84 Figure 4.2-13 Script to plot a single curved parametric element 86 Figure 4.3-1 Symbolic Lagrange quadratic line interpolation in natural coordinates 87 Figure 4.4-1 First two C1 Hermite line interpolations and physical derivatives 89 Figure 4.4-2 Symbolic derivation of the cubic C1 line element interpolation 90 Figure 4.5-2 Symbolic derivation of four-noded Lagrangian quadrilateral interpolations 92 Figure 4.5-4 Top of the Lagrange quadrilaterals script 94 Figure 4.6-3 Symbolic derivation for a Lagrangian quadratic triangle 98 xviixviii Finite Element Analysis: With Numeric and Symbolic Matlab Figure 4.6-4 Top of a script to access Lagrange triangle interpolations 99 Figure 5.1-2 Portion of the unit coordinate line quadrature data 119 Figure 5.1-3 Portion of the natural coordinate tabulated data 120 Figure 5.1-4 Numerical integration of a solution result on a line element 124 Figure 5.1-5 Numerical line integration using tables and the element library 125 Figure 5.1-7 Planar curve segment length by numerical integration 135 Figure 5.2-2 Creating quadrilateral integration rule from the one-dimensional rule 136 Figure 5.2-4 Selected triangular quadrature data values 137 Figure 6.2-2 FEA solution of u′ + au = F, u(0) = 0 157 Figure 7.2-1 Calculation of system equation (DOF) numbers for an element 170 Figure 7.3-1 Assembling element square and column array into the system equations 180 Figure 7.4-1 Matrix partitions using vector subscripts 184 Figure 7.9-3 Calculating the column height for each equation 198 Figure 7.9-4 Extracting the system skyline from the element connection list 200 Figure 7.10-1 Locating a full matrix term in the skyline vector 201 Figure 8.2-1 Element assembly loop: One-dimensional linear, or, quadratic, or cubic 218 Figure 8.5-2 Assign general control numbers and logic flags, allocate arrays 273 Figure 8.5-3 Set the coefficient data, build element arrays, assemble into system arrays 275 Figure 8.5-4 Enforce EBC, solve the system, and recover the reaction 275 Figure 8.5-5 Post-processing the results at selected points 277 Figure 8.6-1 Loop to automate the integration of the element matrices 280List of Matlab Scripts xix Figure 8.6-3 Numerical integration of matrices for tapered bar line elements 283 Figure 8.6-4 Post-processing numerically integrated tapered axial bar 287 Figure 8.6-5 Post-processing a tapered torsional shaft 288 Figure 8.6-6 Partial post-processing for a tapered shaft in torsion 289 Figure 8.6-10 Post-processing integrals for a hydrodynamic bearing 295 Figure 8.6-11 Interpolating variable coefficients for numerical integration 296 Figure 8.7-1 Symbolic solution of ODE with non-zero EBC and NBC 301 Figure 8.7-3 Symbolic stiffness matrix for a quadratic tapered axial bar 304 Figure 10.5-1 Symbolic integration to form the rectangular line-load conversion matrix 356 Figure 10.5-2 Symbolically computing the resultant source vector from line-loads 357 Figure 10.5-3 Symbolic solution of a quintic fixed–fixed beam with a triangular line load 357 Figure 10.6-4 Partitioning the displacements into three sets 362 Figure 10.8-2(a) Beam sketch, controls, basic data, and memory allocation 371 Figure 10.8-2(b) Assemble beam matrices, solve for displacements, and recover reactions 372 Figure 11.1-3 Combining axial and bending arrays to form a frame member stiffness 388 Figure 11.2-1 Recovering the frame member global and local reactions 390 Figure 13.6-1 Constitutive arrays for solid elasticity analysis 501 Figure 13.14-1 Strain–displacement matrix for plane–stress or –strain 511 Figure 13.14-2 Constitutive arrays for plane–stress analysis 511 Figure 13.14-3 Constitutive arrays for plane–strain analysis 513xx Finite Element Analysis: With Numeric and Symbolic Matlab Figure 13.16-2 Strain–displacement matrix for axisymmetric stress model 522 Figure 13.16-3 Constitutive arrays for axisymmetric stress analysis 523 Figure 14.4-1 Tensioned string eigenvalue–eigenvector calculations 550 Figure 14.4-2 Torsional frequencies for a shaft with end-point inertia 551 Figure 14.6-2 Natural frequencies of a cantilever with a transverse spring 559 Figure 14.8-6 Linear buckling load and mode shape for a fixed–pinned beam 577 Figure 14.9-2 Frequencies of beam-column with axial load 581 Figure 14.12-1 Computing ductile material failure criteria 588 Figure 15.3-2 Computing the transient node temperatures 605 Figure 15.4-2(a) Preparing for a transient integration of the finite element matrices 607 Figure 15.4-2(b) Time stepping the independent DOF and recovering the reactions 608 List of Useful Tables Table 1.7-1 Alternate interpretations of spring networks 28 Table 2.5-1 Exact physical integrals for constant Jacobian elements 52 Table 3.3-1 Boundary condition classes for even-order partial differential equations 63 Table 3.3-2 Example one-dimensional boundary conditions 63 Table 4.10-1 Interpolation column and matrix integrals for one-dimensional constant Jacobian 107 Table 4.10-2 Asymmetric constant Jacobian line element integrals 108 Table 5.1-1 Abscissas and weights for Gaussian Quadrature in Unit Coordinates 118 Table 7.2-1 Relating local and system equation numbers 174 Table 7.2-2 Equation numbers for truss element 21 175 Table 12.10-1 Interpolation integrals for straight-edged triangles 432 Table 12.10-2 Diffusion integrals for isotropic straight-edged triangles 433 Table 12.10-3 Diffusion integrals for orthotropic straight-edged triangles 434 xxixxii Finite Element Analysis: With Numeric and Symbolic Matlab Table 12.10-4 Interpolation integrals for rectangular elements 434 Table 12.10-5 Diffusion integrals for orthotropic rectangles 435 Table 12.15-1 Brick elements selected inputs, node 11 result, gradient vector components 478 Table 14.8-1 Interpretation of the buckling load factor 567 Index A abs min, 576 absolute maximum shear stress, 586 absolute temperature, 264 acceleration update, 494, 509, 615 acoustical pressure, 541 acoustical vibration, 537 adaptive mesh, 563 addpath, 200 adjoint, 63, 67 advection matrix, 205, 209, 211, 413, 415 advection-diffusion equation, 407 algebraic system, 46 algorithm constant, 599 analogies, 440 analytic inverse matrix, 8 angle of rotation, 346 angle of twist, 438 analytic matrix inverse, 10 angular velocity, 272 anisotropic material, 406, 408, 499 anti-symmetric mode, 546, 563 anti-symmetry, 306, 369, 432 application library, 284, 329 applied torque, 410, 440 apply mpc type 2.m, 192 approximate contours, 442 area coordinates, 29 artificial hip, 398 assembly, 3, 167, 176, 181, 211, 257, 365, 505, 509 assembly example, 466 assembly of elements, 149 assembly of springs, 492 assembly symbol, 505 assumed form, 308 automatic mesh generator, 274, 516 automation, 271, 373 average acceleration method, 616 average mass matrix, 541, 555, 584, 611 axial bar, 226 axial compression, 354 axial displacement, 490 axial force, 385, 490 axial load, 345 axial stiffness, 188, 384 axial strain, 227, 281, 283 axial stress, 227, 281 axial vibration, 555 axisymmetric analysis, 520 axisymmetric fields, 474 axisymmetric solid, 487 axisymmetric stress, 497, 501, 521 B B axisym elastic.m, 521 B matrix elastic.m, 507 B planar elastic.m, 510 backward difference method, 600 backward-substitution, 196, 600 bar, 225, 236, 245, 319, 488, 497 baracentric coordinates, 29 bar member, 383 beam, 488 beam bending, 63 beam column, 345 627628 Finite Element Analysis: With Numeric and Symbolic Matlab beam element, 88, 341 beam line load resultant, 625 beam on an elastic foundation (BOEF), 345, 401 beam theory, curved, 514 beam vibration, 557 beam with axial load, 578 beam-column vibration, 341, 383, 581 beam stiffness matrix, 380 beam thermal moment, 381 bearing pressure, 289, 292 boundary region, 13 bending moment, 346 bending stiffness, 384, 386, 401, 559 bending stiffness matrix, 351 bi-linear quadrilateral, 112, 424 Biggs exact time history, 618 binary file, 606 body force, 494, 504 Boolean array, 31, 479 Boolean matrix, 9, 13, 147, 168, 210 bottom hole assembly (BHA), 556 boundary condition flag, 389 boundary displacements, 505 boundary flux, 255 boundary integral, 50, 413 boundary interpolation, 3, 503 boundary matrices, 413 boundary property, 62 boundary segment, 3, 411, 414, 505, 526 boundary source, 471 boundary value problem, 64 buckled mode shape, 568, 576 buckled shape, 542 buckling factor, 318, 358, 385, 542, 565 buckling load factor (BLF), 566 C calculus review, 33 cantilever beam, 488, 515, 558 capacitance matrix, 414 capacity matrix, 598, 608 carpet plot, 442, 607 cassic beam, 378, 400 Castigliano’s theorem, 514 catastrophic failure, 565, 568 Cauchy condition, 62, 262 centrifugal acceleration, 300 centripetal force, 578 centroid, 284 change of variables, 14 characteristic equation, 555 chimney, 221, 239 circular arc, 84, 131, 133 color control integer, 445 circular shaft, 218, 488 circumferential stress, 514, 518 classes of boundary conditions, 61 coefficient of thermal expansion (CTE), 245, 352, 499 collocation method, 159 color scalar result.m, 445 column buckling, 566, 578–579 column heights, 196 column matrix, 64 column vector, 5 complex number, 539 compliance matrix, 499 compressive yield stress, 586 concentration, 410 conduction, 28 conditionally stable, 600 conduction matrix, 211, 257, 310, 337, 434, 466, 598 conformable matrices, 6 conical shaft, 286 connection list, 13, 19, 23, 168, 170, 217, 266, 279, 282, 373, 414 connectivity list, 189, 372 consistent mass matrix, 143, 541, 546, 554, 557, 561, 583, 611, 613 consistent units, 222 constant determinant, 37, 423 constant Jacobian, 53, 139 constant source, 213, 471 constitutive law, 488 constitutive matrix, 523 constitutive relation, 499 constraint equation, 181, 192Index 629 continuity level, 70 contour result on mesh.m, 446 control integers, 271, 273 control numbers, 273 count EBC MPC flags.m, 192 count MPC eqs.m, 189 convection coefficient, 62, 205, 216, 239, 241, 265, 268, 310 convection condition, 4 convection loss, 265 convection matrix, 257, 413, 432, 434 coordinates, 3 corresponding PDE, 163 Crank–Nicolson method, 600, 608, 612 critical dampening, 614, 622 critical time step, 612 cross product, 54 cubic bar, 624 cubic beam element, 353, 365, 571, 578, 625 cubic interpolation, 76, 79–81, 122 cubic polynomial, 343 curvature, 70 curve length, 428 curve tangent, 35 curved beam theory, 513–514 curved elements, 412, 435 Cuthill-McGee algorithm, 198 cyclic permutation, 45, 54 cyclic symmetry, 436–437, 526 D damping matrix, 509, 614 Darcy’s Law, 409 DC circuit, 28 DC current, 25 decrease element size, 612 deflection, 364 degenerate quadrilaterals, 53 degree of freedom numbers, 203 degrees of freedom (DOF), 167, 169, 173, 182, 210, 350, 400, 490, 502, 538 dependent variable, 59 derivative of a matrix, 5 det, 8 determinant, 541 deformation, 15 diag, 539, 576 diagonally dominant, 21 diagonal mass matrix, 541–542, 583, 611 diagonal matrix, 5 diff, 300 differential area, 41 differential equations, 59 differential geometry, 37 differential length, 50 differential operator, 412 differential volume, 36, 55, 480 diffusion, 205 diffusion coefficients, 410 diffusion matrix, 209, 211, 413, 434 diffusion matrix integrals, 433 dimensional homogeneity, 159 Dirac Delta distribution, 217, 346 direct assembly, 179 direct time integration, 598, 614 direction angles, 573 direction cosines, 164, 318 directional derivative, 428 Dirichlet boundary condition, 146, 205 Dirichlet conditions, 2, 61 discontinuous flux, 370, 469 discontinuous source, 243 disk, 557 disp, 547, 558 displacement components, 487, 495 displacement derivatives, 495 displacement field, 490 displacement gradients, 487, 495 displacement transformation, 320 displacement vector, 318, 491, 495, 502–503, 510, 517 displacements, 227, 282, 305, 317, 326, 487 distorted elements, 38 distortional energy criterion, 586 distributed transverse load, 351630 Finite Element Analysis: With Numeric and Symbolic Matlab division by zero, 501 do-loop, 179 DOF numbering, 169 dot product, 491 drill string, 219, 556 ductile material, 587 dynamic solutions, 613 E earthquake, 617 EBC code, 3, 146, 158, 182, 229, 231, 233 EBC location symbol, 442 eddy currents, 493 edge based elements, 503 edge interpolation, 428 eig, 538, 547, 558, 586, 588 eig.m, 549 eigenproblem, 66, 537, 541 eigenvalue, 541, 554, 572, 612 eigenvector, 541 eigs, 538, 584 electric field intensity, 503 el qp xyz fluxes.txt, 445 el shape n local deriv.m, 77, 97 elastic foundation, 297, 345, 375 elastic modulus, 270, 284, 499 elastic stiffness matrix, 507 elastic support, 558 elasticity matrix, 487, 500, 512 electrical conductor, 606 electrical engineering, 503 electrical network, 25 electrical resistance, 606 electromagnetics, 503 electrostatics, 405, 410 element axes, 387 element displacements, 505 element domain, 31 element length, 386 element loop, 274, 276–277, 282, 287 element mass matrix, 509 element measure, 427 element properties, 217 element reactions, 299, 389, 493 element type, 3, 278, 373 elliptic equation, 163 elliptical differential equation, 2 elliptical PDE, 145 emissivity, 264 energy minimization, 17 enforce EBC, 183, 185, 276, 344, 363, 366 enforce MPC equations.m, 189 enforce NBC, 344 enforcing EBC, 168 engineering shear strains, 496 equation of equilibrium, 220 equation of motion, 556 equilibrium equations, 15, 319, 325, 349, 353, 491 equivalent integral form, 2, 205 equivalent stress, 586 essential boundary condition (EBC), 2–3, 17, 67, 146, 158, 168, 182, 185, 208, 229, 231, 233, 319, 405, 492 Euler’s Theorem, 145 even order equations, 60, 62, 67 exact integrals, 37, 51–52, 432 exercises, 114, 313 exterior corner, 439, 447 external couple, 385 external forces, 493 external impact force, 617 extreme eigenvalues, 540 F Factor of Safety (FOS), 568, 577 factorization, 8, 195, 600 failure criteria, 346, 586 failure criterion, 487, 512 fake convection, 264 fake material, 442 Fick’s Law, 410 field 2d types.m, 442 field analysis, 405 fillet, 439 film thickness, 291 fin, 265, 267, 269, 412 finite differences in time, 599Index 631 finite elements in time, 599 fire brick, 225 first-order ODE, 60, 148 fixed joint, 389 fixed–pinned beam, 571 fixed–fixed beam, 363 fixed–pinned column, 577–578 flat plate, 488 flexural stiffness, 345 flux components, 409 flux vector, 430 for-loop, 179 force vector, 491 force-displacement curve, 497 Fortran, 177, 374 forward difference (Euler) method, 600 forward-substitution, 196, 204 foundation matrix, 257 foundation modulus, 270 foundation pressure, 376 foundation stiffness, 217, 401 foundation stiffness matrix, 351 four-noded tetrahedron, 413 Fourier’s Law, 65, 225, 409, 430, 469, 474 Fourier number, 611 fourth-order ODE, 345 Fox–Goodwin method, 616 frame member, 383 fread, 289, 293 free joint, 389 free unknowns, 541 frequency range, 614, 622 functions library, 507, 510 G Galerkin method, 145, 157–158, 165, 205, 256, 348 Galerkin-in-time method, 600 Galileo, 488 gap, 375 gather, 171, 175, 276, 282, 422, 469 Gauss points, 251 Gaussian quadrature, 117 gear, 192 gen trap history.m, 606 generalized mass matrix, 209, 352, 541, 583 generalized trapezoidal integration, 599, 606 geometric Jacobian, 422 geometric stiffness matrix, 351, 542, 567, 571, 575, 578, 625 get element index.m, 374 get and add pt mass.m, 543 get and add pt stiff.m, 543 get constraint eqs.m, 189 get element index.m, 170, 287, 319, 373 get mesh elements.m, 278, 373 get mesh nodes.m, 276, 373 get mesh properties.m, 278, 374 get point sources.m, 276, 373 get quadrature rule.m, 280–281 global axes, 387 global constant, 540 geometry mapping, 32 governing matrix form, 147 governing matrix system, 546 gradient operator, 309, 337, 408 gradient vector, 474 graph L3 C1 moment.m, 374 graph L3 C1 result.m, 374 graph L3 C1 shear.m, 374 gravity load, 337 Green’s theorem, 48, 50, 56, 157, 481 H half symmetry, 442, 515 handbook solution, 365, 544 hanging bar, 228, 230, 232 heat conduction, 62 heat convection coefficient, 263 heat flow, 242, 267, 269, 409, 468 heat flux vector, 225, 241, 409, 430 heat generation rate, 216, 242, 465, 606 heat loss, 268 heat source, 467632 Finite Element Analysis: With Numeric and Symbolic Matlab heat transfer, 216, 221, 405 Helmholtz equation, 405, 407, 538, 545 Hermite elements, 341 Hermite interpolation, 70, 86, 341, 350, 546 Hermite polynomials, 347 Hermite 1D C1 library.m, 89, 90, 343 hexahedra, 135 hidden result surface.m, 446 highest derivative, 60 Hilber–Hughes–Taylor method, 616 hinge, 389 homogeneous solution, 60, 347 Hooke’s law, 488, 499, 510, 521, 523 hoop strain, 520 hoop stress, 520 hydrostatic pressure, 501 hyperbolic cosine, 267 hyperbolic equation, 545 hydrodynamic lubrication, 289, 291 I independent displacements, 21 implied loop, 180 impossible temperatures, 611 improper mesh, 611 improper time step, 611 inclined member, 387 inclined roller, 193, 329, 330 incomplete polynomial, 424 incompressible material, 499, 501 incorrect interpolation functions, 102 independent variable, 59 infinite gradient, 562 inflow heat flux, 469 initial condition, 598, 608 initial strain work, 236, 245, 304, 499, 508 initial stress matrix, 542 initial stress stiffness, 575 inner product, 63 instability, 385 insufficient memory, 369 insulation, 225 integral form, 145 integral of a matrix, 5 integration by parts, 48, 157, 206, 348, 545 integration loop, 136, 279, 282 integration points, 518 intensity, 517 inter-element continuity, 60, 101, 341, 348 interior boundary curve, 441 internal force, 492 internal heat generation, 608 internal nodes, 307 interpolation functions, 61, 309, 337, 546 interpolation integrals, 432 interpolation matrix, 283 inverse Jacobian matrix, 37, 46–47, 480 inverse matrix, 364 invertible map, 43 inviscid fluid, 410 Iron’s Theorem, 540, 612 isoparametric element, 96, 243, 425 isotropic material, 408, 470, 500 iterative solution, 264 ivert 3 by 3.m, 10 J Jacobian determinant, 36, 81 Jacobian inverse, 81 Jacobian matrix, 35–36, 42, 44, 80, 124, 126, 131, 421, 480 jumps, 358 K Kelvin, 407 kinematically unstable, 325 kinetic energy, 509 Kirchhoff’s law, 27 L L-shaped membrane, 560–561 Lagrange interpolation, 70–71 Lagrange quadrilaterals.m, 93–94Index 633 Lagrangian 1D library.m, 77 Lagrangian triangles.m, 97 Laplace equation, 405 largest eigenvalue, 540 laser beam, 611 least square fit, 612 least squares method, 159, 165, 342 line element integrals, 47, 107–108 line load resultant, 242, 358 linear acceleration method, 616 linear algebraic equations, 167 linear bar, 623 linear buckling, 568 linear elastic spring, 15 linear interpolation, 75, 78, 149 linear matrix system, 7, 600 linear spring, 490 linear tetrahedron, 100, 113 linear triangle, 44, 93–94, 115 load case, 567 load per unit length, 217 load transfer matrix, 354, 386 local derivatives, 73 local stiffness, 402 logic flags, 273 long bone, 397 lubrication, 289 M magnetic field intensity, 494, 503 magnetic vector potential, 503 magnetostatics, 405 mass damping, 356, 614 mass density, 272, 352, 407, 509, 545, 556 mass matrix, 130, 212, 244, 356, 402, 578 massless spring, 542 material axes, 4 material failure, 587 material interface, 503 material properties, 282 Matlab backslash, 7 Matlab colon, 177 Matlab logo, 560 Matlab single quote, 6 Matlab symbolic, 300 matrix addition, 6, 8 matrix equation of motion, 509 matrix equations of equilibrium, 208, 492, 508 matrix equilibrium equations, 203 matrix factorization, 204, 599 matrix inverse, 7 matrix multiplication, 54, 479 matrix notation, 4 matrix partition, 182, 260 matrix system, 61 matrix transpose, 54 maximum principal stress, 589 maximum shear stress, 284, 288, 445, 517, 587 measure, 77, 99 mechanical strain, 239, 276 mechanical work, 490–491, 504 mechanics of materials, 513 member end forces, 389 member rotation matrix, 574 member weight, 317 membrane analogy, 439 membrane stiffness matrix, 561 membrane tension, 560 membrane thickness, 560 membrane vibration, 560 Membrane vibration.m, 565 memory allocation, 274 mesh, 146 mesh at shock surface, 612 mesh connections, 274 mesh control, 562 mesh coordinates, 274 mesh generator, 4 mesh refinement, 253 method of moments, 160 methods of weighted residuals (MWRs), 157 minimum total potential energy (MTPE), 14, 489 microwave oven, 537 minimum state, 491 mirror plane, 306, 369634 Finite Element Analysis: With Numeric and Symbolic Matlab mixed boundary condition, 62, 262, 411, 414 mixed condition, 4 mode shape, 545–546, 549 mode shape surface.m, 565 modulus of elasticity, 384 Mohr’s circle, 496 moment diagram, 359, 376 moment of inertia, 128, 129, 557 msh bc xyz.txt, 3, 191, 277, 373 msh ebc.txt, 3, 191 msh load pt.txt, 191, 276, 373 msh mass pt.txt, 543 msh mpc.txt, 191 msh properties.txt, 4, 191, 278, 374 msh stiff pt.txt, 543 msh typ nodes.txt, 3, 191, 278 multiple span beam, 370 multiple-step method, 600 multipoint constraints (MPC), 168, 186–187, 192, 203, 323, 329, 389, 437 N natural boundary condition (NatBC), 4, 62, 261, 263, 406, 481 natural boundary condition matrix, 214 natural coordinates, 42–43, 85, 110, 141 natural frequency, 542, 548, 578 necessary and sufficient convergence, 307 Neumann boundary condition, 146, 205 Neumann condition, 4, 62, 164 neutral state, 491 Newmark Beta method, 615 Newton’s Laws, 232, 234, 329, 364, 493, 556 Newton’s third law, 23 node based elements, 503 node reaction.txt, 445 node results.txt, 445 non-circular shaft, 405, 438, 488 non-dimensional area, 99 non-essential boundary condition (NBC), 4, 67, 146, 158, 259, 261 non-flat surface, 422 non-Fourier heat transfer, 611 non-overlapping elements, 209 normal boundary gradient, 164 normal derivative, 62 normal flux, 411 normal gradient, 406 normal heat flux, 431, 471 normal slope, 306 normal strain, 496, 499 normal stress, 498, 518 normal vector, 50, 65, 411 normalized eigenvector, 541 number of boundary segments, 505 number of degrees of freedom, 493 number of element equations, 502 number of integration points, 425 number of mesh nodes, 506 number of nodes per element, 502 number of quadrature points, 131, 136–137, 285 number of segment nodes, 505 number of spatial dimensions, 493 number of strains, 497 number of system equations, 506 number of unknowns per node, 423, 502 numbering of the displacements, 502 numerical integration, 117, 121–122, 127, 130, 141, 282, 285, 287, 431 numerical integration, 279 numerical manipulations, 185 O one-eighth symmetry, 465 one-step method, 599 operator matrix, 412, 431 ordinary differential equation, 598 orthogonal functions, 146 orthogonal matrix, 390 orthotropic diffusion, 435 orthotropic material, 49, 408, 430, 474Index 635 orthotropic properties, 406 orthotropic strains, 521 oscillating results, 211 oscillations, 415 P packed flag, 332, 358 packed integer code, 323 padded array, 374 padded connection list, 170 padded list, 170 parametric coordinates, 78 parametric derivatives, 35, 73, 421 parametric space, 14, 31 parametric transformation, 41 particular solution, 60 partitioned B matrix, 507 partitioned interpolation, 502 partitioned matrix, 250 partitioned stiffness, 360 patch test, 307 penalty method, 186 penalty number, 189 permeability, 410 Petrov–Galerkin method, 211 physical area, 43, 45, 417, 427 physical derivative, 35, 46, 78 physical gradient, 79, 423 physical length, 77, 88, 121–122 physical space, 31 physical space dimension, 412 pile, 270 pin support, 325, 327, 331 planar elasticity, 510 planar frame, 341, 383 Planar Frame.m, 388 planar truss, 317, 330, 337 Planar Truss.m, 318, 329 plane frame, 383, 402 plane of symmetry, 433 plane–strain, 488, 495, 497 plane–stress, 487, 497, 510 plane–stress script, 513 plane–stress vibration, 583 point couples, 358 point inertia, 557 point load, 324, 386, 494 point mass, 542–543, 556 point matrices, 310 point moment, 348 point spring, 543 point stiffness, 543 Poisson’s equation, 51, 164, 405, 438 Poisson’s ratio, 499 polar coordinates, 41 polar moment of inertia, 47, 139, 218, 284, 288, 556 polynomial degree, 285 polynomial interpolation, 70 porous media, 405, 409 positive definite, 499 post-buckling, 568 post-processing, 185, 225, 267, 276–277, 281–282, 468, 510 potential energy, 491 potential flow, 409 pressure gradient, 115, 289, 426, 429 principal directions, 406 principal normal stresses, 519 principal stresses, 586 principle axes, 383 principle inertia axes, 397 properties list, 374 propped cantilever, 558 pseudo-element, 188, 189 Q Q16, 93 Q25, 93 Q9, 93 qp rule Gauss.m, 119 qp rule nat quad.m, 135–136 qp rule unit Gauss.m, 119, 286 qp rule unit tri.m, 137 quadratic bar, 623 quadratic element, 154, 515 quadratic interpolation, 71, 74, 76, 78, 130 quadratic line element, 71636 Finite Element Analysis: With Numeric and Symbolic Matlab quadratic tetrahedron, 113 quadratic triangle, 583 quadrature loop, 277, 282, 286 quadrature point, 586 quadrature point locations, 136 quadrature weights, 10 quadratures, 117, 119 quadrilateral element, 91, 373 quadrilateral quadrature, 135 quarter-symmetry, 436 quintic beam element, 354, 571, 625 quintic interpolation, 76, 88 R radial acceleration, 272 radial displacement, 520 radial stress, 514 radiation, 264 radius of gyration, 568 rate of heat generation, 441 rational functions, 425 reaction force, 516 reaction vector, 209, 467 reactions, 168, 182–183, 185, 215, 221, 227, 238, 259, 267, 276, 284, 299, 306, 324, 361, 364, 411, 468, 472, 490 reactions sum, 468, 472 real, 87, 539, 547, 558 rectangular element, 427 rectangular element integrals, 434 rectangular interpolation matrix, 502 rectangular matrix, 248, 386, 422 rectangular transfer matrix, 354 reduced integration, 501 reentrant corner, 439, 446 repeated freedoms, 439 residual error, 146, 159, 342 resultant forces, 386 results graph, 443 result on const y.m, 446 result surface plot.m, 446 Reynolds 1D Lub.m, 291 Reynolds’ Equation, 289 right angle triangle, 465 righthand side (RHS), 21 rigid body motion, 347, 538 rigid body rotation, 496, 514 rigid body translation, 516 rigid link, 188 Robin condition (RBC), 62, 164, 262 roller support, 329, 331 rotating bar, 272, 300 rotational inertia, 556 rotational pendulum, 556 rotational spring, 559 rotational transformation, 496 row matrix, 6 rows in B, 412 rubber, 499 Runge–Kutta integration, 599 S salar interpolation, 12 satter, 19 scalar field problem, 407, 598 scalar product, 491 scalar result surface.m, 445 scaled diagonal mass, 583, 598, 614 scatter, 167, 171, 175, 180, 263, 413, 466 second derivative, 349, 412 second-order tensor, 496, 586 second-moments of inertia, 383 second-order ODE, 60, 205 seepage, 405 Seiche motion, 538 self-adjoint operator, 64 Serendipity interpolation, 70 Serendipity quadrilaterals, 101 settlement, 227–228, 270 seven bar truss, 331 shaft, 192, 219, 410 shape change, 496 shape functions, 72 sharp transients, 598 shear diagram, 359, 376 shear force, 359 shear modulus, 218, 284, 499, 556 shear strain, 284, 499Index 637 shear strain tensor, 496 shear stress components, 284, 288, 409–410, 439, 498 shells, 487 simple harmonic motion (SHM), 545 simplex element, 93 simplify, 304 single step methods, 600, 617 singular matrix, 209, 215 singular point, 65, 439, 561 singularity element, 562 singularity points, 66 skyline storage mode, 196 slenderness ratio, 568 slope continuity, 343, 364, 546 small deflections, 349 smallest eigenvalue, 540 soap film, 440 soil, 270, 406 solid elasticity, 501 solid element, 488 solid stress, 497 SolidWorks simulation, 514 solution bounds, 488 solution domain, 526 solution energy, 32 solution gradient, 16, 24 solution integral, 32 sort, 539, 584 sound system, 537 source discontinuity, 205, 243 source rate per unit volume, 407 source vector, 209, 413, 432, 434 sources sum, 468 space frame, 384, 396 Space Truss.m, 333 space truss, 332 space-time finite elements, 599 sparse storage, 196 spatial coordinates, 421 spatial derivatives, 13 spatial interpolation, 147, 209 specific weight, 323 SQ12, 102 SQ8, 102, 110 spring stiffness, 490 spring stiffness matrix, 16 spring-mass system, 542, 618 springs in series, 492 standard output files, 445 statically indeterminate, 370 stationary point, 491 stationary state, 490–491 steady state, 415, 482, 600, 607, 621 steel, 306, 323, 331, 339 Stefan–Boltzmann constant, 264 stiffness matrix, 283, 285, 302, 319–320, 516, 541, 554 straight sided triangle, 139, 141 straight triangle integrals, 432, 434 straight triangles, 139 strain components, 487, 497, 506 strain energy density, 490, 492, 494, 498, 528 strain matrix, 506 strain-displacement matrix, 506 strain-displacement relation, 487 strain-energy density, 498 strain-stress relation, 527 stress analysis, 487 stress averaging, 517 stress components, 487, 497 stress function integral, 410, 430, 438, 440, 446 stress intensity, 586–587 stress recovery, 282 stress stiffening, 542 stress tensor, 586 stress-free state, 499 stress-strain law, 487 stress-strain relation, 528, 568 string tension, 548 String vib 2 L3.m, 549 string vibration, 545 strong form, 60, 158, 205 structural buckling, 565 structural damping, 614 structural instability, 565 structural stiffness matrix, 542 sub-parametric, 247 subset, 168, 500, 503, 526 sum of integrals, 147638 Finite Element Analysis: With Numeric and Symbolic Matlab sum to unity, 75 summary, 53, 67, 140, 165, 203, 309, 336, 378, 400, 479, 526, 621 summary and notation, 110 support movement, 359 surface area, 55, 493 surface normal, 55 surface stress vector, 439 surface tangent, 35, 55 surface traction, 493, 504 switch, 79 symbolic derivation, 87–88, 90, 92 symbolic Matlab, 1 symbolic solutions, 300 symmetric integrals, 107 symmetric matrix, 21 symmetric mode, 546, 563 symmetry, 306, 432 symmetry restraint, 516 system equation number, 371 system equations, 168 system equilibrium, 490 system equilibrium matrices, 172 system matrices, 414 system reactions, 23 T tangent vector, 429 Tapered Axial Bar.m, 284 tapered bar, 281, 302 tapered shaft, 281, 287 temperature, 239, 242, 265, 267–270, 304, 322, 385, 409, 472 temperature change, 352 temporal integration, 599 tensile yield stress, 586 tension, 545 tensioned-beam, 346 tetrahedra, 94 thermal analogy, 440 thermal bending moment, 352 thermal conductivity, 83, 222, 265, 409, 441 thermal expansion, 384 thermal load, 236, 305, 310, 322, 327, 337, 386, 529 thermal moment, 402 thermal shock, 611 thermal strains, 245, 304, 499–500 thermal stress, 245 thin solid, 510 thin-walled members, 446 three-point rule, 140, 142 time dependent EBC, 606 time dependent loads, 614 time dependent reactions, 606 time history, 598, 606 time history graph, 607 time oscillations, 612 time step size, 540, 599 Tong’s Theorem, 347 torque, 219, 284, 287 torsion, 192, 409, 410 torsion control integer, 445 torsional constant, 438 Torsional Vib BHA L3.m, 557 torsional shaft, 28, 218, 284, 396, 555 torsional stiffness matrix, 219, 438, 556 torsional vibration, 547, 556, 558 total potential energy, 490, 491 transformation matrix, 322, 389 transformed material property, 431 transient analysis, 597 transient history, 610 transient matrix system, 415, 481, 621 transpose of a product, 6, 110 transverse displacement, 345, 560 transverse moment, 348 transverse shear, 346, 354, 383 transverse shear force, 348 transverse spring, 572 triangle matrix, 204, 373 triangle quadrature, 139 triangular matrix, 5 triangular quadrature rule selection, 141 triple matrix product, 16 truss buckling, 193, 573 truss element stiffness, 321, 337Index 639 truss member, 318 turbine blade, 578 twist angle, 219, 284 two-bar truss, 323, 339 two force member, 317 two-node beam, 402 two-point rule, 118 U U-clamp, 513 uniaxial tension test, 587 union, 65, 309, 337, 526 unique results, 106 unique solution, 61 unit coordinates, 80, 94, 123 unit normal vector, 164 unit triangle, 139 unsymmetric integrals, 108 unsymmetric matrix, 209 V validation, 488, 544 variable coefficient, 281, 302 variable Jacobian, 38 variable source, 242, 281 variable thickness, 512, 514 variational calculus, 489 variational form, 162 vector elements, 503 vector interpolation, 13, 502 vector subscript, 170, 177, 210, 274, 281, 360, 361, 374, 384–385, 540, 547, 558 velocity potential, 65, 405, 410, 509 velocity update, 615 velocity vector, 409 vertical pile, 217 vibration, 538 viscous fluid, 493 voltage, 25 Voigt notation, 497 Voigt stress notation, 586 volume change, 286, 496 volume integral, 53 volume of revolution, 520 volumetric rate of heat generation, 476 von Mises effective stress, 514 von Mises stress, 586 W warp function, 438 wave equation, 545 wave propagation, 614 waveguide, 537 weak boundary condition, 4 weak form, 61, 158, 206 weighted residuals, 157, 165 Wilson method, 616 Winkler foundation, 347 wood, 406 Y yield stress, 284, 568, 587 Z zero eigenvalue, 538 zero Jacobian, 38 zeros, 276, 373, 554 #ماتلاب,#متلاب,#Matlab,#مات_لاب,#مت_لاب,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Finite Element Analysis - With Numeric and Symbolic MatLAB رابط مباشر لتنزيل كتاب Finite Element Analysis - With Numeric and Symbolic MatLAB
|
|