Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Intelligent Information Processing with Matlab الخميس 04 يوليو 2024, 3:35 pm | |
|
أخواني في الله أحضرت لكم كتاب Intelligent Information Processing with Matlab Xiu Zhang, Xin Zhang and Wei Wang
و المحتوى كما يلي :
Contents 1 Artiϐicial Neural Network 1. 1 Artiϐicial Neuron 1. 2 Overview of Artiϐicial Neural Network 1. 3 Backpropagation Neural Network 1. 4 Hopϐield Neural Network 1. 5 Competitive Neural Network 1. 6 Deep Neural Network References 2 Convolutional Neural Network 2. 1 Overview of Convolutional Neural Network 2. 2 Neural Network Performance Evaluation 2. 3 Transfer Learning with Convolutional Neural Network 2. 4 Research Progress of Neural Network References 3 Fuzzy Computing 3. 1 Overview of Fuzzy Computing 3. 2 Fuzzy Sets 3. 3 Fuzzy Pattern Recognition 3. 4 Fuzzy Clustering 3. 5 Fuzzy Inference 3. 6 Fuzzy Control System 3. 7 Fuzzy Logic Designer References 4 Fuzzy Neural Network 4. 1 Overview of Fuzzy Neural Network4. 2 Adaptive Fuzzy Neural Inference System 4. 3 Time Series Prediction 4. 4 Interval Type-2 Fuzzy Logic 4. 5 Fuzzy C-means Clustering 4. 6 Suburban Commuting Prediction Problem 4. 7 Research Progress of Fuzzy Computing References 5 Evolutionary Computing 5. 1 Overview of Evolutionary Computing 5. 2 Simple Genetic Algorithm 5. 3 Genetic Algorithm for Travelling Salesman Problem 5. 4 Ant Colony Optimization Algorithm 5. 5 Particle Swarm Optimization Algorithm 5. 6 Differential Evolution Algorithm References 6 Testing and Evaluation of Evolutionary Computing 6. 1 Test Set of Traveling Salesman Problem 6. 2 Test Set of Continuous Optimization Problem 6. 3 Evaluation of Continuous Optimization Problems 6. 4 Artiϐicial Bee Colony Algorithm 6. 5 Fireworks Algorithm 6. 6 Research Progress of Evolutionary Computing References References 1. Yue CT, Price KV, Suganthan PN, Liang JJ, Ali MZ, Qu BY, Award NH, Biswas PP (2020) Problem Deϐinitions and evaluation Criteria for the CEC 2020 special session and competition on single objective bound constrained numerical optimization. Technical Report 201911,Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China, Nanyang Technological University, Singapore 2. Tan Y (2015) Fireworks algorithm: a novel swarm intelligence optimization method. Springer, Berlin [Crossref][zbMATH] 3. Li J, Tan Y (2020) A comprehensive review of the ϐireworks algorithm. ACM Comput Survey 52:1–28 [Crossref] 4. Shi Y (2011) Brain storm optimization algorithm. In: Tan Y, Shi Y, Chai Y, Wang G (eds) Advances in swarm intelligence. ICSI 2011. Lecture notes in computer science, vol 6728. Springer, Berlin, Heidelberg, pp 303–309 5. Duan H, Qiao P (2014) Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int J Intell Comput Cybern 7:24–37 [MathSciNet][Crossref] 6. Cheng S, Qin Q, Chen J et al (2016) Brain storm optimization algorithm: a review. Artif Intell Rev 46:445–458 [Crossref] 7. Duan H, Huo M, Shi Y (2020) Limit-cycle-based mutant multiobjective pigeon-inspired optimization. IEEE Trans Evol Comput 24(5):948–959 [Crossref] 8. Mehanović D, Kečo D, Kevrić J et al (2021) Feature selection using cloud-based parallel genetic algorithm for intrusion detection data classiϐication. Neural Comput Applic 33:11861–11873. https://doi.org/10.1007/s00521-021-05871-5 [Crossref] 9. Liang Z, Qin Q, Zhou C (2022) An image encryption algorithm based on Fibonacci Q-matrix and genetic algorithm. Neural Comput Applic 34:19313–19341. https://doi.org/10.1007/ s00521-022-07493-x [Crossref] 10. Nguyen TPQ, Kuo RJ, Le MD et al (2022) Local search genetic algorithm-based possibilistic weighted fuzzy c-means for clustering mixed numerical and categorical data. Neural Comput Applic 34:18059–18074. https://doi.org/10.1007/s00521-022-07411-1 [Crossref] 11. Abbasi S, Rahmani AM, Balador A, Sahaϐi A (2023) A fault-tolerant adaptive genetic algorithm for service scheduling in internet of vehicles. Appl Soft Comput 143:110413. https://doi.org/ 10.1016/j.asoc.2023.110413 [Crossref] 12. Luo Q, Wang H, Zheng Y et al (2020) Research on path planning of mobile robot based on improved ant colony algorithm. Neural Comput Applic 32:1555–1566. https://doi.org/10. 1007/s00521-019-04172-2 [Crossref] 13.Wu Z, Wu J, Zhao M et al (2021) Two-layered ant colony system to improve engraving robot’s efϐiciency based on a large-scale TSP model. Neural Comput Applic 33:6939–6949. https:// doi.org/10.1007/s00521-020-05468-4 [Crossref] 14. Yu J, You X, Liu S (2022) Dynamically induced clustering ant colony algorithm based on a coevolutionary chain. Knowl-Based Syst 251:109231. https://doi.org/10.1016/j.knosys.2022. 109231 [Crossref] 15. Shami TM, Mirjalili S, Al-Eryani Y et al (2023) Velocity pausing particle swarm optimization: a novel variant for global optimization. Neural Comput Applic 35:9193–9223. https://doi.org/ 10.1007/s00521-022-08179-0 [Crossref] 16. Kiruthiga D, Manikandan V (2023) Levy ϐlight-particle swarm optimization-assisted BiLSTM + dropout deep learning model for short-term load forecasting. Neural Comput Applic 35:2679– 2700. https://doi.org/10.1007/s00521-022-07751-y [Crossref] 17. Zhang X, Zhang X, Wu Z (2019) Spectrum allocation by wave based adaptive differential evolution algorithm. Ad Hoc Netw 94:101969 [Crossref] 18. Kumar R, Kumar P, Kumar Y (2022) Three stage fusion for effective time series forecasting using Bi-LSTM-ARIMA and improved DE-ABC algorithm. Neural Comput Applic 34:18421– 18437. https://doi.org/10.1007/s00521-022-07431-x [Crossref] 19. Zhang X, Zhang X, Han L (2019) An energy efϐicient internet of things network using restart artiϐicial bee colony and wireless power transfer. IEEE Access 7:12686–12695 [Crossref] 20. Stephan P, Stephan T, Kannan R et al (2021) A hybrid artiϐicial bee colony with whale optimization algorithm for improved breast cancer diagnosis. Neural Comput Applic 33:13667–13691. https://doi.org/10.1007/s00521-021-05997-6 [Crossref] 21. Alrosan A, Alomoush W, Norwawi N et al (2021) An improved artiϐicial bee colony algorithm based on mean best-guided approach for continuous optimization problems and real brain MRI images segmentation. Neural Comput Applic 33:1671–1697. https://doi.org/10.1007/ s00521-020-05118-9 [Crossref] 22. Satoh T, Nishizawa S, Nagase J et al (2023) Artiϐicial bee colony algorithm-based design of discrete-time stable unknown input estimator. Inf Sci 634:621–649. https://doi.org/10.1016/ j.ins.2023.03.130 [Crossref] 23. Luo H, He C, Zhou J, Zhang L (2021) Rolling bearing sub-health recognition via extreme learning machine based on deep belief network optimized by improved ϐireworks. IEEEAccess 9:42013–42026 [Crossref] 24. Han S, Zhu K, Zhou M et al (2022) A novel multiobjective ϐireworks algorithm and its applications to imbalanced distance minimization problems. IEEE/CAA J Automatica Sinica 9(8):1476–1489 [Crossref] 25. Ma L, Cheng S, Shi Y (2021) Enhancing learning efϐiciency of brain storm optimization via orthogonal learning design. IEEE Trans Syst Man Cybern Syst 51(1):6723–6742 [Crossref] 26. Xue Y, Zhao Y, Slowik A (2021) Classiϐication based on brain storm optimization with feature selection. IEEE Access 9:16582–16590 27. Duan H, Zhao J, Deng Y, Shi Y, Ding X (2021) Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning. IEEE Trans Aerosp Electron Syst 57(1):706–720 #ماتلاب,#متلاب,#Matlab,#مات_لاب,#مت_لاب,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Intelligent Information Processing with Matlab رابط مباشر لتنزيل كتاب Intelligent Information Processing with Matlab
|
|