Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mechanical Behavior of Materials - Fundamentals, Analysis, and Calculations الأربعاء 16 فبراير 2022, 3:15 pm | |
|
أخواني في الله أحضرت لكم كتاب Mechanical Behavior of Materials - Fundamentals, Analysis, and Calculations Zainul Huda
و المحتوى كما يلي :
Contents Part I Materials: Deformation, Testing, and Strengthening 1 Introduction . 3 1.1 What Is Mechanical Behavior of Materials? And Why Study It? 3 1.2 Deformation Behaviors 4 1.2.1 Deformation and Its Classification 4 1.2.2 Time-Independent Deformation – Elastic/Plastic Deformation . 4 1.2.3 Time Dependent Deformation – Creep 6 1.3 Materials’ Failure − Classification and Disasters 7 1.3.1 Fracture and Failure . 7 1.3.2 Classification of Material Failures 7 1.3.3 Ductile and Brittle Failures . 7 1.3.4 Ductile-Brittle Transition (DBT) Failure . 10 1.3.5 Fatigue Failure . 11 1.4 Materials Selection in Design . 11 1.5 The Factor of Safety in Design 12 Questions and Problems 13 References . 14 2 Physics of Deformation 15 2.1 Significance of Crystallography in Deformation Behavior . 15 2.2 Crystallography 15 2.2.1 Crystalline Solids and Crystal Systems 15 2.2.2 Crystal-Structure Properties . 17 2.2.3 Crystal Structures of Metals . 17 2.2.4 Miller Indices 20 2.2.5 Crystallographic Directions . 20 2.2.6 Crystallographic Planes 21x 2.3 Crystal Imperctions – Dislocations . 22 2.3.1 Cystal Defects . 22 2.3.2 Dislocations . 23 2.4 Deformation Mechanisms – Dislocation Movement 24 2.4.1 Deformation by Slip . 24 2.4.2 Deformation by Twinning 26 2.5 Plastic Deformation – Cold Working/Rolling . 27 2.6 Deformation in Single Crystals – Schmid’s Law . 28 2.7 Calculations – Worked Examples . 30 Questions and Problems 36 References . 36 3 Mechanical Testing and Properties of Materials . 39 3.1 Material Processing and Mechanical Properties . 39 3.1.1 Relationship Between Processing and Properties 39 3.1.2 Mechanical Properties/Behaviors 39 3.2 Shear Stress and Shear Modulus . 40 3.3 Tensile Testing and Tensile Properties . 42 3.3.1 Tensile Testing . 42 3.3.2 Tensile Mechanical Properties . 43 3.4 Elastic Mechanical Properties . 46 3.5 Hardness Testing and Hardness of Materials 47 3.5.1 Hardness and its Testing . 47 3.5.2 Brinell Hardness Test 47 3.5.3 Rockwell Hardness Test 48 3.5.4 Vickers Hardness Test . 50 3.5.5 Knoop Hardness Test 51 3.5.6 Microhardness Test . 51 3.5.7 Hardness Conversion 52 3.6 Impact Toughness – Impact Energy . 52 3.6.1 Impact Testing . 52 3.6.2 The Analysis of Impact Testing 53 3.7 Fatigue and Creep Behaviors 53 3.8 Calculations – Worked Examples . 54 Questions and Problems 59 References . 61 4 Strengthening Mechanisms in Metals/Alloys 63 4.1 Strengthening Mechanisms − Importance and Basis . 63 4.2 Grain-Boundary Strengthening 64 4.2.1 The Evolution of Grained Microstructure 64 4.2.2 Grain-Boundary Strengthening – Hall-Petch Relationship . 65 4.3 Strain Hardening . 67 4.4 Solid-Solution Strengthening 69 4.5 Precipitation Strengthening . 70 Contentsxi 4.6 Dispersion Strengthening – Mechanical Alloying 72 4.7 Calculations – Worked Examples (Solved Problems) . 72 Questions and Problems 77 References . 79 5 Materials in Engineering 81 5.1 Materials and Engineers 81 5.2 Classification of Materials in Engineering 81 5.3 Metals and Alloys 82 5.4 Cast Irons . 83 5.4.1 Characteristics and Applications of Cast Irons 83 5.4.2 Types of Cast Irons . 83 5.4.3 Mechanical Properties of Cast Irons 85 5.5 Steels 86 5.5.1 Steels’ Definition, Classification, and Designation Systems 86 5.5.2 Carbon Steels 87 5.5.3 Alloy Steels . 88 5.6 Non-Ferrous Metals and Alloys 91 5.6.1 Aluminum and its Alloys . 91 5.6.2 Copper and its Alloys 94 5.6.3 Nickel and its Alloys 95 5.6.4 Titanium and its Alloys 95 5.7 Ceramics and Glasses . 96 5.7.1 Introduction to Ceramics . 96 5.7.2 Traditional Ceramics 96 5.7.3 Advanced Ceramics . 97 5.8 Polymers and Plastics . 97 5.8.1 Introduction to Polymers and Plastics . 97 5.8.2 Plastics – Mechanical Behaviors and Applications . 98 5.9 Composite Materials 100 5.10 Semiconductors and Advanced Materials 101 5.11 Calculations – Worked Examples/Solved Problems . 101 Questions and Problems 104 References . 106 Part II Stresses, Strains, and Deformation Behaviors 6 Stress-Strain Relations and Deformation Models 109 6.1 True Stress and True Strain . 109 6.2 Stress-Strain Relationships – Young’s–, Tangent–, and Plastic Moduli . 111 6.3 Stress-Strain Relationship in Strain Hardening 112 6.4 Elastic and Plastic Deformation Modles – Yield Criteria 113 6.5 Calcualtions – Worked Examples . 114 Questions and Problems 118 References . 118 Contentsxii 7 Elasticity and Viscoelasticity . 119 7.1 Elastic Behavior of Materials 119 7.1.1 Elasticity and Elastic Constants 119 7.1.2 Anisotropic and Isotropic Materials . 119 7.2 Poisson’s Ratio . 120 7.3 Resilience . 121 7.4 Generalized Hook’s Law – Hook’s Law for Three Dimensions 122 7.5 Bulk Modulus – Relationship Between the Elastic Constants . 124 7.5.1 Elastic Constants – E, G, and B 124 7.5.2 Derivation of Expression for the Bulk Modulus . 125 7.5.3 Relationships Between the Elastic Constants and the Poisson’s Ratio 128 7.6 Thermal Effects on Elastic Strains 128 7.7 Viscoelasticity . 129 7.8 Calculations – Worked Examples . 130 Questions and Problems 140 References . 142 8 Complex/Principal Stresses and Strains 143 8.1 Complex Stresses . 143 8.1.1 Technological Importance of Complex and Multiple Stresses . 143 8.1.2 What Is a Complex Stresses Situation? 143 8.2 The State of Plane Stress – Axes Transformation 144 8.2.1 Analyses for Direct and Shear Stresses 145 8.3 Principal Stresses . 147 8.4 Mohr’s Circle – Graphical Representation of Stresses 149 8.5 Generalized Plane Stress – The Presence of σz in the Plane Stress . 149 8.6 Principal Stresses and the Maximum Shear Stress – 3D Consideration 150 8.7 Complex Strains – Principal Strains in 3 Directions 152 8.8 Calaculations – Worked Examples 153 Questions and Problems 162 References . 163 9 Plasticity and Superplasticity – Theory and Applications 165 9.1 Plasticity – Design and Manufacturing Approaches 165 9.2 The Stress-Strain Curve and Plasticity 165 9.3 Plastic Instability in Uniaxial Loading 166 9.4 Bauschinger Effect 168 9.5 Bending of Beams – Plastic Deformation 169 9.5.1 Deriving Expressions for the Curvature and the Radius of Curvature . 169 9.5.2 Symmetrical Bending and the Longitudinal Strain in Simply Supported Beams 170 Contentsxiii 9.6 Application of Plasticity to Sheet Metal Forming 172 9.6.1 Principal Strain Increments in Uniaxial Loading . 172 9.6.2 Plane Stress Deformation in Sheet Metal Forming . 173 9.7 Hydrostatic Stress and the Deviatoric Stresses 174 9.8 Levy-Mises Flow Rule and Relation Bewteen α and β 175 9.9 Effective Stress and Effective Strain 177 9.10 Superplasticity . 177 9.11 Calculations – Worked Examples . 178 Questions and Problems 186 References . 188 10 Torsion in Shafts . 189 10.1 Torsion/Stresses in Shafts . 189 10.1.1 Torsional Shear Stress in a Shaft . 189 10.1.2 Twist and Shear Strain . 190 10.1.3 Power and Torque Relationship and Shaft Design 191 10.1.4 Torsional Flexibility and Stiffness 191 10.2 Calcualtions – Worked Examples 192 Questions and Problems 198 References . 198 Part III Failure, Design, and Composites Behavior 11 Failures Theories and Design . 201 11.1 Failures and Theories of Failure 201 11.2 Maximum Principal Normal Stress Theory or Rankine Theory 202 11.3 Maximum Shear Stress Theory of Failure or Tresca Theory . 202 11.3.1 Theoretical Aspect of Tresca Theory 202 11.3.2 Design Application of Tresca Theory 204 11.4 Von Mises Theory of Failure . 206 11.4.1 Theoretical Aspect of von-Mises Theory . 206 11.4.2 Design Aspect of von-Mises Theory of Failure 206 11.5 Calcualtions – Worked Examples 208 Questions and Problems 212 References . 213 12 Fracture Mechanics and Design 215 12.1 Engineering Failures and Evolution of Fracture Mechanics . 215 12.2 Griffith’s Crack Theory . 216 12.3 Stress Concentration Factor 218 12.4 Loading Modes in Fracture Mechanics . 220 12.5 Stress Intensity Factor (K), Kc, and KIC . 221 12.6 Design Philosophy . 223 12.6.1 What Is the Design Philosophy of Fracture Mechanics? 223 Contentsxiv 12.6.2 Application of Design Philosophy to Decide whether or Not a Design Is Safe 223 12.6.3 Application of Design Philosophy to Material Selection 224 12.6.4 Application of Design Philosophy to Design of a Testing/NDT Method . 224 12.6.5 Application of Design Philosophy to the Determination of Design Stress 224 12.7 Calculations – Worked Examples 224 Questions and Problems 229 References . 231 13 Fatigue Behavior of Materials 233 13.1 Fatigue Failure – Fundamentals 233 13.2 Stress Cycles . 233 13.2.1 Types of Stresses and Stress Cycles . 233 13.2.2 Stress Cycle Parameters 235 13.3 Fatigue Testing – Determination of Fatigue Strength and Fatigue Life . 236 13.4 Goodman’s Law . 238 13.5 Techniques in Designing against Fatigue Failure . 238 13.6 Miner’s Law of Cumulative Damage . 239 13.7 Fatigue Crack Growth Rate and Computation of Fatigue Life . 240 13.8 Calculations – Worked Examples 242 Questions and Problems 249 References . 251 14 Creep Behavior of Materials . 253 14.1 Creep Deformation and Failure . 253 14.2 Creep Testing and Creep Curve . 253 14.3 Factors Controlling Creep Rate . 256 14.4 Larson-Miller Parameter (LMP) 257 14.5 Creep-Limited Alloy Design . 258 14.6 Calculations – Worked Examples 258 Questions and Problems 264 References . 265 15 Mechanical Behavior of Composite Materials . 267 15.1 Composite Materials, Classification, and Applications . 267 15.2 Mechanical Behavior of Fibrous Composites 269 15.2.1 General Mechanical Behavior of Fibrous Composites . 269 15.2.2 Behavior of Unidirectional Continuous Fiber Composite under Longitudinal Loading 270 15.2.3 Stiffness of Unidirectional Continuous Fiber Composite under Transverse Loading . 272 Contentsxv 15.2.4 Poisson’s Ratio of Composite Material 273 15.2.5 Shear Modulus of Fibrous Composite Materials . 273 15.3 Mechanical Behavior of Particulate Composites 273 15.4 Calculations – Worked Examples . 274 Questions and Problems 280 References . 281 Answers to Problems . 283 Index . A Accidental loads, 8 Activation energies of creep defined, 257 determination, 257, 261 Aging, see Precipitation hardening Aircraft structural materials, 89–93, 95, 239 Air hardening steels, 89 AISI-1020, 46, 56, 57 AISI 304N, 76 Allowable stress (working stress) in design, 12 Alloyed cast iron, 83, 85 Alloying, see Solid-solution strengthening Alloys, 48–51, 54, 63–78, 81–83, 86–95, 102, 103, 112, 117, 121, 187, 223, 228, 237, 243, 258, 263, 264 Alloy steels Hadfield manganese steel, 89, 90 maraging steels, 70, 89, 90 stainless steels, 89, 90, 112 4140 steel, 89 4340 steel, 89, 112, 119 Alpha brass, 94 Alpha-iron, 17 Alternating stress cycle, 233–236, 242, 243, 249, 250 Alumina (Al2O3), 46, 96–98, 208, 273 Aluminum and alloys, 50–51, 67, 69, 82, 83, 91–93, 102, 103, 127, 223, 228, 236, 243 American Iron and Steel Institute (AISI), 46, 56, 57, 68, 69, 86, 87 American Society for Testing and Materials (ASTM), 42 Amorphous solid, 15 Amplitude, of stress, 235–238, 242, 243 Amplitude ratio, 235, 236, 243 Angle of rotation, 145, 148, 152–154, 161–163 Angle of twist, 41, 54, 190, 192, 193, 195–198 Anisotropic materials, 46, 119, 140 Annealing of steel, 73 Austempered ductile iron (ADI), 83, 85, 104 Austenite (γ-iron), 87, 90, 91 Austenitic stainless steels (ASS), 68, 69, 90 Axial strain, 60, 120, 122, 130 Axial stress, 233, 234 B Barium titanate, 97, 106 Bauschinger effect, 166, 168, 186, 188, 201, 213 Beach marks in fatigue failure, 233 Beams, 6, 91, 144, 170–171, 180–182, 186, 235, 250, 253 Bending of beams analysis, 169–171 curvature, 169–170 radius of curvature, 169–170 symmetrical bending, 170–171 Bending stress, 234, 242 Biaxial stresses, 201 Biomaterial, 81, 95 Body-centered cubic (BCC) structure, 17–20, 26, 30, 69, 78, 90 Bonding in solids, 15–16 Bones, 11 Boron carbide (B4C), 96 Boron nitride (BN), 96 Brale indenter, 48 Branching in polymers, 97 Brass, 8, 34, 49, 51, 83, 94, 127 Bridges failure of, 6, 215 fatigue life of, 7, 239, 248, 250 Brinell hardness test, 47, 48, 58 Brittle behavior, 7–10 effects of cracks on, 215, 216, 221 multiaxial criteria for, 8, 12 in notch fatigue, 238, 239 Brittle fracture, 7–10, 201, 215, 217 techniques against, 238–239 Bronze, 83, 94, 104, 127, 264 Bulk modulus, 40, 46, 118, 119, 124–128, 138, 144 Burger’s vector, 23, 24, 36 C Cabin window corner radii, 220, 230 Carbon fiber reinforced polymer (CFRP) composite, 99, 100, 267, 281 Carbon steels, 49, 83, 86–88, 100, 102, 104, 112, 127, 210, 213, 223, 236 AISI-SAE designations for, 89 mechanical properties of, 88 microstructures of, 87, 88 Cartridge brass, 94 Casting, 12, 39, 64, 85, 92, 258 Cast irons characteristics and applications of, 83 mechanical properties of, 85, 86 types of, 83–85 Cemented carbides, 50, 100 Cementite, 84, 85, 87 Ceramic matrix composites (CMC), 100, 267 Ceramics, 16, 81, 96–98, 100, 104, 227, 228, 230, 258, 267 clay products, 96 concrete, 267 engineering (advanced), 97 Chain of molecules, 97 Challenger, STS-51L space shuttle, 215 Charpy V-notch test, 52, 59, 61 Chromium in steel, 83, 88 Circular (embedded) cracks, 222, 229, 230 Circular shafts, torsion of, 189, 195, 197 Clay, 96 Cleavage, 7, 10 Climb (dislocation), 253, 254, 264 Coefficient of thermal expansion (α), 95, 128, 139, 144, 269 Cold work (CW), 27–28, 34, 54, 67–69, 75, 76, 90, 92, 94, 114, 116, 117 Compacted graphite (CG) cast iron, 83, 85 Complex strain, 152–153, 162 Complex stress, 3, 145–148, 152, 155, 162 Composite materials, 99, 100, 267–281 applications, 267, 269 classification, 267, 268 definition, 267 fibrous composites, 100, 267–273 mechanical behavior of, 100, 267–281 particulate composites, 100, 267, 270, 273–274 Crack initiation, 8, 11, 85, 233 Crack propagation, 11, 222, 230, 233 Crack termination, 11, 233 Creep, 3, 6, 7, 40, 53, 54, 95, 96, 103, 201, 215, 253–264 curve (creep curve), 253–256 deformation, 3, 6, 7, 13, 253, 254 failure, 253–255 primary creep, 253–255 rate of creep, 256–257, 260–264 secondary (steady-state) creep, 253, 256 tertiary creep, 253, 255 testing (creep testing), 253–255 Creep-limited alloy design, 258 Critical crack size (ac), 223, 229, 238, 249, 250 Critical fiber length (lc), 267, 270, 274 Critical resolved shear stress τ crss, 29, 34–36 Critical stress intensity factor Kc, 221, 222, 230 Crystal imperfections (defects), 22–24 Crystallographic directions, 20, 21, 32, 36 Crystallographic planes, 7, 15, 20–22, 24, 25, 32, 33, 36 Crystallography, 15–21 Crystal structure, 3, 15–20, 23–25, 30, 32, 72 BCC, 17–19, 26, 30 FCC, 18–20, 25, 30 HCP, 19, 20, 26, 27, 30, 32 Crystal structure properties, 17, 19 Crystal systems, 15–17, 21 Cumulative damage, 239–240, 246, 250 Curvature, 169–171, 180, 181, 186, 188, 218–219, 226, 227, 230 Cyclic stress-strain behavior, 233–235 D Deflection in beam, 169, 180, 187 Deformation characteristics of the various types of, 23–24 creep, 3, 6–7, 14, 253, 254 elastic type, 4–6, 14, 113–114, 125 Index289 plastic type, 3, 4, 6, 8–11, 13, 22–29, 36, 45, 47, 63, 78, 111, 113–114, 167, 169–171, 179, 190, 201, 213 by slip, 3, 15, 22, 24–26, 28, 34, 36 by twin, 25–27 Deformation behavior models, 113–114 Degree of crystallinity, 98 Degree of polymerization (DP), 98, 103 Design creep, 260 defined, 12 fatigue, 238–239 material selection, 11–12, 224 safety factors, 12–13, 204, 205, 210, 212, 228 Design philosophy of fracture mechanics, 224, 228 Deviatoric stress, 174–175, 184, 186–188 Diamond crystal structure, 16 Die swell, 129, 130, 140 Dislocation climb (in creep), 253, 254, 264 Dislocation density (ρD), 23, 25, 27, 35, 36, 67, 68, 74–76, 78 Dislocation motion, plastic deformation by, 15, 28 Dislocation piling, 65, 66 Dislocations, 3, 15, 22–25, 28, 29, 35, 36, 63–70, 72, 74–78, 168, 253, 254, 258, 264 Dispersion strengthening, 64, 71, 72, 77, 78 Draft, 27, 34, 36 Ductile behavior in a tension test, 42–43 Ductile fracture, 7–10, 13, 201 Ductile iron, 83, 85 Ductility engineering measures of, 46, 52, 53 and necking, 45, 166–168 percent elongation, 45, 57 percent reduction in area, 45 Duplex stainless steel (DSS), 90, 91 E Edge dislocation, 23–25, 63, 64, 253 Effective strain, 177, 184, 187 Effective stress, 177, 185, 187 Elastic constants, 46, 119, 121, 124–128, 138, 140 Elastic deformation bulk modulus, 46, 119, 124–128, 138 hydrostatic stress, 124, 125 thermal strains, 128, 129 volume change in elastic deformation, 125, 126, 138, 140 volumetric strain, 124–126, 138 Elastic limit, 4, 45, 113, 119 Elastic, linear-hardening stress-strain relationship, 111–113 Elastic modulus (Young’s modulus) under longitudinal loading, 271, 275, 278, 279 under transverse loading, 274, 277, 280 Elastic, perfectly plastic stress-strain relationship, 112, 118 Elastic strain, 4, 44, 45, 57, 111–113, 118, 121, 128–129, 165, 254 Elastic strains, Hooke’s law for, 6, 124 Elastic, work-hardening stress-strain relationship, 112, 201, 213 Elastomers, 129 Electronic materials, 81, 101 Elliptical cracks, 217 Elongation, percent, 45, 57, 60 Embrittlement, 7, 201 Endurance limit, 236, 237 Energy, impact, 9, 10, 13, 52–54, 59, 61 Engineering ceramics, 97 Engineering components materials selection for, 11, 224 Engineering design, 186 Engineering materials classes and examples of, 81, 82 general characteristics of, 40, 46 Engineering stress and strain, 42, 43, 55, 56, 109, 110, 115, 165, 167 Engineering stress-strain properties breaking strength, 45, 166 ductility, 45 elastic limit, 4, 45, 119 elastic (Young’s) modulus, 4, 45, 56, 111–112, 115 elongation, 43, 45, 46, 57, 58, 166 lower yield point, 165 necking behavior and ductility, 45, 166 proportional limit, 44, 45, 56, 57 reduction in area, 45, 46, 168 strain hardening, 64, 67, 68, 112, 116, 166, 168 tangent modulus, 111–112, 115 from tension, 45, 46, 144, 165 ultimate tensile strength, 44, 45, 48, 166, 170, 238 upper yield point, 165–166 yielding, 45, 121, 166, 168 yield strength, 45, 46, 57, 166, 168 Environmental assisted cracking (EAC), 7, 8 Epoxy, 99, 104, 267, 274, 280 Etched sample, 67, 74, 78 Extensometer, 42 Extrinsic semiconductors, 101 Index290 F Face-centered cubic (FCC) structure, 18, 19 Factor of safety (FoS), 12–13, 204–207, 210–213 Failure criteria brittle fracture criteria, 7–10, 201, 215, 217 yield criteria, 113–114 Failure envelope, for Mohr’s circle, 149–150 Failure surface, 208–210 Fatigue crack initiations in, 11, 85, 233 cyclic loading, 235, 236, 241 definitions for, 11 design against, 10, 216 fatigue damage, 239 fatigue limit behavior, 236, 238, 243, 244 fatigue testing, 236–237 fracture mechanics approach, 3, 215–229 HCF and LCF, 237 life estimates with, 236–237, 239–243, 245–250 mean stresses, 235, 236, 238, 242, 244 Miner’s rule, 239–240 notch effects, 244, 250 residual stress effects, 238 S-N curves, 236, 243, 245 Fatigue crack growth fatigue crack-growth rate, 240–242, 247, 249, 250 Paris equation, 249–250 Fatigue failure designing to avoid, 201, 238, 239 stages in, 11, 12, 234 surface residual stresses, 238 Fatigue failure prevention/avoidance, 201 Fatigue limits, 236, 238, 244, 245 Fatigue strength, 39, 85, 86, 91, 105, 236–239, 243, 249 Fatigue stress concentration factor, 239, 244 Fatigue testing, 236–237 Ferrite (α-iron), 91 Ferritic stainless steel (FSS), 90 Ferro-electric material, 97, 106 Ferrous alloys, 83, 86 Fiberglass, 100, 267, 276, 280 Fibrous composites E calculation under longitudinal loading, 271, 275, 278, 279 E calculation under transverse loading, 272, 277 random discontinuous fibers, 267, 268 unidirectional continuous fibers, 267, 270–273, 278, 280 unidirectional discontinuous fibers, 267, 268 Flaw shape factor (geometric factor), 216, 224, 228, 229, 239 Fluctuating stress cycle, 233, 235 Fracture brittle, 7–10, 201, 215, 217 cleavage, 7, 10 of cracked members, 221, 224, 225, 240 intergranular, 9 modes, 10, 220–221 for static and impact loading, 8, 10 transgranular, 7, 9 types of, 8, 9, 201 Fracture mechanics application to design a test method, 224 application to design stress, 224 application to predict design safety, 224 critical stress intensity factor (Kc), 221, 222 for fatigue crack growth, 240–242, 247 plane strain fracture toughness (KIC), 221, 222, 228, 231 stress concentration factor, 218–220, 226, 230, 239, 244, 250 stress intensity factor K, 241 Fracture strength, 57 Fracture surface, 8–10 Fracture toughness, 85, 105, 221, 223, 224, 228–231, 273 Fully plastic yielding, 165 G Gage length, 42, 43, 109, 169, 258 Gamma iron, 18 Gas-turbine (GT) engines, 95, 253, 258 Generalized Hooke’s law, 124 Generalized plane stress, 150–151, 158, 163 Geometric factor in fracture mechanics, 221 GFRP composite, 267, 275–277, 280 GLARE composite, 267, 269 Glass, 9, 53, 81, 96–98, 100, 127, 223, 224, 226, 230, 267, 269, 273, 274, 279, 280 Goodman diagram, 238, 250 Goodman equation, 238 Grain boundaries, 7, 64–67, 77, 78 Grain-boundary strengthening, 64–67, 77, 78 Grained microstructure, 64–65 Grain oriented electrical steel (GOES), 21, 91, 104 Graphite, 16, 83–85, 101, 102, 267 Gray cast iron, 84 Index291 Griffith, A.A., 216–218, 226, 230, 250 Griffith’s crack theory, 216–218, 230 H Hall-Petch relationship, 65–67, 72, 73, 78 Hardening, 47, 64, 66–68, 77, 78, 89, 112–113, 116, 118, 166, 168, 201, 213 Hardness, 39, 40, 47–53, 58–60, 67, 68, 83, 85–90, 102, 105 Hardness correlations and conversions, 52 Hardness tests Brinell hardness test, 47–49, 58, 60, 90 Rockwell hardness test, 47–50, 59 Vickers hardness test, 47, 50–51, 58–60 Havilland Comet aircraft crash, 218 Heating, ventilation, and air-conditioning (HVAC) system, 94 Heat treatment, 47, 70, 85–90, 92–93, 102, 104, 258 Hexagonal close-packed (HCP) crystal structure, 17, 19–20 High-carbon steels, 87, 88 High cycle fatigue (HCF), 237, 249 High density polyethylene (HDPE), 46, 98, 99, 106 High-temperature creep, 6, 54, 93, 95, 253 Hooke’s law, 6, 124 Hot working (HW), 114, 118 Hybrid composites, 267, 269 Hydrogen embrittlement (HE), 7, 201 Hydrostatic stress, 124–127, 138, 174–175, 184–188 I Impact energy tests, 52–53, 59, 61 Impact loading, fracture under, 8 Impurity (interstitial, substitutional), 69, 70, 78 Indentation hardness, 47 Inter-granular (IG) fracture, 7, 14 Intermetallic compounds, 70 Internal combustion (IC) engine, 84 Interstitial solid solution, 69, 70, 78 Intrinsic semiconductors, 101 Irons, cast, see Cast irons Iso-strain condition, 270, 271, 275, 280 Iso-stress condition, 272, 280 Isotropic materials, 47, 113, 119, 121, 129, 141, 152, 160, 163 Izod impact test, 52 Izod tests, 52 K Kevlar, 100 Knoop hardness number (KHN), 51, 52, 59 Knoop hardness testing, 47, 51, 59 L Laminated composites, 100, 267, 269, 281 Larson–Miller parameter (LMP), 257–258, 263, 264 Lateral strain, 60, 120, 122, 123, 130, 131, 144 Lattice plane and site, 21 Levy-Mises flow rule, 175–176 Liberty Ships failures, 215 Lignin, 267 Linear hardening, 113, 118 Line defects (dislocations), 15, 23 Liquid metal embrittlement, 7 Loading modes: I, II, & III, 221, 229, 230 Low-alloy high-strength (LAHS) steels, 86, 89, 105 Low-carbon steel, 87–90, 102 Low-density polyethylene (LDPE), 98, 99, 106 Lower yield point (LYP), 165, 166 Low-temperature creep, 6 M Malleable iron, 50, 83, 85 Manganese in steel, 86, 88–90, 92 Maraging steels, 70, 89, 90 Martensite, 90, 91, 105 Martensitic stainless steel (MSS), 90, 105 Materials selection, 11–13, 224 Maximum normal stress fracture criterion, 202 Maximum principal normal stress theory/ Rankine theory, 201, 202 Maximum shear stress, 150–152, 162, 192, 193, 197, 198, 201–206, 213 Maximum shear stress (MSS) theory (Tresca theory), 201–205, 213 Mean stress, 235, 236, 238, 242, 244, 249, 250 Mechanical behavior of materials, 3, 13, 15, 21, 22, 40, 47 Mechanical testing creep testing, 253–255, 259, 260, 264 fatigue tests, 236–237 hardness tests, 47–52, 58–60 notch-impact tests, 52 tension/tensile tests, 42–47, 57–60, 110, 111, 114, 115, 118, 130, 131, 166–167, 172, 178 Medium-carbon steels, 87, 102 Index292 Metal matrix composites (MMCs), 100, 267 Metals ferrous metals, 83 nonferrous metals, 83, 91–95 strengthening methods for, 63 Microstructures, 3, 39, 64–65, 70, 72, 76–78, 84, 85, 87–88, 90–92, 95, 105, 106, 177, 178, 258 Micro-void coalescence, see Dimpled rupture Mild steel, 8, 26, 42, 46, 50, 53, 87, 105, 114, 118, 119, 121, 132, 135, 139, 141, 165, 166, 177, 186, 208–210 Miller indices, 20–22, 32, 33, 36 Miner’s law diagram, 240 Miner’s law of cumulative damage, 239–240 Mixed dislocation, 23–24 Models, see Deformation models Modulus of elasticity, see Young’s modulus Modulus of rigidity, see Shear modulus Mohr’s circle, 143, 149–150, 156–158, 162 Molybdenum in steel, 88, 90 Multiaxial stress effects, 10, 201 See also Three-dimensional stress-strain Muntz metal, 94 N Naval brass, 112 Necking, 166 Nickel-base superalloys, 70, 95, 258 Nitrided steels hardness, 50 Nitrides, 51, 96 Nodular cast iron, 84 Nominal stresses, 218 Nonferrous metals aluminum alloys, 91–93 copper alloys, 93–94 superalloys, 95 titanium alloys, 95 Non-grain oriented electrical steels (NGOES), 91 Normal stress, 29, 122–124, 126, 133, 136, 138, 140–141, 145, 148–152, 154, 155, 157–160, 162, 163, 174, 177, 183, 187, 188, 201–203, 208, 209, 212, 229 Notched specimens, 52, 239, 244 Notch effects in fatigue, 244, 250 Notch-free specimen, 239 Notch-impact tests, 52 Notch sensitivity factor, 239, 244, 250 Numerical integration (for crack growth), 3, 216, 240–242, 247, 250, 255 Nylons, 281 O Opening loading mode (Mode I), 220–221, 227, 229–231 Orthotropic materials, 46 Oxide-dispersion-strengthened (ODS) alloys, 72 Oxides, 96, 223, 228, 257, 258, 261 P Paris equation, 247, 249 Particulate composites, 100, 267, 268, 273–274, 279 Pearlite, 85, 87, 88 Percent elongation, 45, 57, 60 Percent reduction in area (%RA), 45, 46 Perfect crystals, 22, 36 Perfectly plastic stress-strain curve, 111, 165–166 relationship, 68, 112 See also Elastic-perfectly plastic stress-strain Plain-carbon steels, 86 Plain strain, 222, 228, 231, 247 Plane strain fracture toughness, 221, 222, 228, 231 Plane stress, 144–147, 149–151, 158, 162, 163, 172–175, 183, 186, 203, 204, 206–208, 210, 212 Plastic deformation, 3–10, 13, 15, 24, 25, 27–29, 45, 47, 63, 78, 111, 113–114, 118, 165, 168–171, 177, 201, 213 Plasticity, see Plastic deformation Plastic modulus, 111, 115, 116, 118 Plastics, see Polymers Plastic strain, 111, 112, 165, 166, 169 See also Plastic deformation Point defects, 23 Poisson’s ratio, 46, 47, 60, 119–121, 128, 131, 138, 141, 270, 273, 277, 278, 280 Polar moment of inertia (J), 189 Polyethylene (PE), 42, 46, 97–99, 104, 121 Polyethylene terephthalate (PET), 98, 99 Polymerization, 97, 98, 103 Polymer matrix composites (PMC), 100, 267, 274, 279, 281 Polymers thermoplastics, 98, 100, 104 thermosetting plastics, 99, 104 Polypropylene (PP), 98, 99, 103, 106, 223 Polystyrene (PS), 223 Polyvinyl chloride (PVC), 54, 98, 99, 106, 223 Potential energy of plate, 217, 225, 231 Index293 Power (motor power/shaft power), 191 Power-hardening stress–strain relationship, 112 Precipitate, coherent & non-coherent, 70–72, 77, 78 Precipitation hardening, 258 Pressure vessels, 134–136, 143, 144 Primary stage of creep, 253–256, 264 Principal axes, 145, 150, 158, 159, 163 Principal normal stresses, 145, 148–152, 154, 155, 157–159, 162, 163, 174, 177, 183, 187, 188, 201–203, 208, 212 Principal shear stresses, 149, 150, 152, 156, 157, 160, 162 Principal strains, 152–153, 172–173, 177, 182, 183, 187 Principal stresses maximum shear stress, 151, 152, 159, 201 Proportional limit, 42, 44, 45, 56, 57, 60 Q Quartz crystal structure, 15, 16 Quartz fiber reinforced plastic (QFRP) composite, 269 Quenching and tempering, 90, 93 R Radius of curvature, 169–170, 180, 181, 187, 188, 218, 219, 226, 227, 230 Range of stress, 239 Real crystal, 22 Reduction in area, 8, 45, 46, 88, 102, 166 Refractories, 96 Remaining fatigue lifetime of bridge (calculation), 246, 250 Repeating stress cycle, 11, 233, 235 Repeating unit in polymers, 97, 98 Residual stresses and strains, 238 Resilience, 46, 59, 119, 121, 131, 132, 141, 142 Rigid/linear strain hardening deformation model, 113 Rigid/perfectly plastic deformation model, 113 Rockwell hardness test, 47–50, 59 Rolling, 6, 21, 27–28, 34, 67, 68, 85, 89, 91, 120, 165 Rotating-bending fatigue testing, 237 Rubbers, 127, 129, 138 Rupture in creep, 253, 263, 264 S SAE steel nomenclature, 86 Safety, 3, 12–13, 91, 205–207, 210, 212, 213, 224, 228 Safety factor in design, 12–13, 205, 206, 210, 212 Screw dislocation, 23–25, 36 Secondary stage of creep, 253, 255, 264 Semiconductor fabrication, 22 Semiconductors, 22, 81, 101 Shearing loading mode (Mode II), 220, 229, 230 Shear modulus, 40–42, 46, 55, 119, 121, 124, 137, 139, 269, 270, 273, 278, 280 Sheet metal forming, application of plasticity, 3, 6, 165, 172–174 Ship structures, cracks in, 215 Silica (SiO2), 15, 16, 96–98, 223, 226, 273, 279, 281 Silica glasses, see Glass Silicon (polycrystalline silicon), 21, 22, 83, 88, 90, 92, 94, 101 Silicon carbide (SiC), 96 Single crystals, 15, 28–29, 34, 36, 66, 78, 95, 258 Sintered alumina powder (SAP), 72 Slip (in crystals), 15, 24–26, 29, 63 S-N (stress vs. fatigue life) curves, 236, 243, 245 Solidification, 23, 39, 64, 65, 258 Solid-solution strengthening, 64, 69–70, 77 Solution heat treatment, see Precipitation hardening Space shuttles, 97, 215 Specific modulus, 267, 281 Specific strength, 93, 95, 100, 102, 103, 105, 286 Specific surface energy, 217, 218, 224, 226, 230 Specimens, test for fatigue, 236–237, 239, 244 for notch-impact, 52, 239, 244 for tension, 42, 165 Spheroidal graphitic (SG) iron, 83–85, 101, 105 Stainless steels, 54, 68, 69, 76, 89, 90, 112, 116, 127, 259, 264 Static loading, 218, 226, 227, 230 Steady-state creep, 256, 259, 260, 264 Index294 Steels as-quenched, 90 carbon, 49, 83, 86–88, 100, 102, 104, 105, 112, 127, 210, 213, 223, 236, 284 LAHS, 86, 89, 105 mild, 8, 26, 42, 46, 50, 53, 87, 105, 114, 118, 121, 132, 135, 139, 141, 165, 166, 177, 186, 208–210 numbering system, 86 plain-carbon, 86 quenching and tempering, 90 stainless, 54, 68, 69, 76, 89, 90, 112, 116, 127, 259, 264 tool, 90 Stiffness, 4, 39, 45, 46, 95, 119, 191, 192, 196, 198, 270–273 Strain complex states of, 3, 143–163 engineering strain, 42, 43, 55, 58, 60, 115, 118, 165 principal strains, 143–163, 172–173, 177, 182, 183, 187 strain gage, 43, 169 transformation of axes, 145 true strain, 27, 34, 36, 60, 109–112, 114–118, 167, 169, 179 Strain hardening, 64, 67–69, 77, 78, 112, 116, 166, 168 Strain hardening exponent, 68 Strain rate sensitivity index, 177, 178, 186, 187 Strain ratio, 60, 173, 176, 183, 184, 186, 187 Strength coefficient, 40, 68, 112, 177 Strengthening mechanisms for metals, 63–78 Strength, theoretical, 22, 36 Stress basic formulas, 13 components of, 122, 145, 149 direct stress, 137, 138, 145–148, 153, 155, 158, 162 engineering stress, 42, 43, 55, 60, 109, 115, 118, 165, 166 generalized plane stress, 150, 151, 157, 163 Mohr’s circle for, 143, 149, 150, 157 nominal type, 218 plane stress, 144–147, 150, 151, 158, 162, 163, 172–175, 183, 187, 203, 204, 206–208, 210, 212 in pressure vessels, 134, 135, 143, 144 principal stresses, 143–163 residual stress, 238 three-dimensional states of, 145 transformation of axes, 145 true stress, 109–111, 113, 115–119, 168, 177, 178, 186–188 von Mises stress, 206 Stress amplitude, 235–238, 242, 243, 249 Stress concentration factor–fatigue loading (Kf), 244 Stress concentration factor–static loading (Ks), 218, 226, 230 Stress corrosion cracking (SCC), 7, 8, 90, 201 Stress intensity factor, 221–223, 227, 230, 241 Stress–life curves, 263 Stress range, 235, 236, 241–243, 249 Stress ratio, 173, 175, 176, 183, 184, 235, 236, 242, 243, 249 Stress–strain curves for AISI-1020 steel, 46, 56, 57 elastic, linear-hardening relationship, 113, 118 elastic, perfectly plastic relationship, 113, 118 elastic, power-hardening relationship, 112 Stress–strain relationships, 3, 45, 109, 111–112 Substitutional solid-solution alloys, 69, 70, 78 Superalloys, 70, 72, 76, 83, 95, 103, 105, 106, 258, 264 Surface crack/flaw, 218, 222, 228, 230 Surface defects, 23, 238, 239 Surface residual stresses, 238 Swell ratio (die swell ratio), 130, 140 T Tangent modulus, 111, 112, 115, 118 Tanker failure, 99, 215 TD-nickel, 72 Tearing mode crack (Mode III), 220 TEM micrograph, 23 Temperature effects in creep, 253, 256–263 Tempering, 85 Tensile strength (ultimate tensile strength), 40, 44–46, 48, 57, 60, 69, 76, 84, 85, 88, 90, 92–96, 102, 166, 168, 188, 202, 208, 212, 236, 238, 243, 244, 249, 269–271, 274, 277, 279, 280 Tension test ductile vs. brittle behavior in, 53 engineering properties from, 42 stress-strain curves, 43–46, 56, 57, 60, 110, 111, 165–166 test methodology, 47–49 true stress-strain interpretation of, 109–111 Index295 Tertiary stage of creep, 253, 255, 264 Theoretical strength, 22, 36 Theories of failure Rankine theory, 201, 202, 208, 213 Tresca theory, 201–205, 210, 211, 213 Von-Mises theory, 206–207, 211–213 Theory of linear elasticity, 44, 113 Thermal activation, 253 Thermal strains, 128, 129 Thermal stresses, 23 Thermoplastics, 8, 98–100, 104, 106 Thermosets, 98–100 Three-dimensional states of stress, 153 Three-dimensional stress-strain relationships, 153 Time-based growth rate, of cracks, 216 Time-dependent behaviour, see Creep Time-temperature parameters, in creep Larson-Miller (L-M) parameter, 257–258, 263 Time to rupture in creep, 263, 264 Titanic ship failure, 10, 212, 215 Titanium and alloys, 95, 223, 258 Tool steel, 90 Torque, 189–198, 204, 205, 210, 213 Torsional flexibility, 191–192, 196, 198 Torsional stiffness, 192, 196, 198 Torsion of circular shafts, 189, 195, 197 Toughness, from tension tests, 40, 52 Transformation of axes, 145 Transgranular fracture, 7, 9 Tresca criterion, see Maximum shear stress yield criterion TRIP steels, 91, 104, 105, 889 True stress and strain, 109 True stress-strain curves, 110 True stress-strain interpretation of tension test, 109–111 Tungsten carbide (WC), 48 Tungsten in steel, 48, 89 Twinning, 15, 24, 26–27, 36 U Ultimate tensile strength, 40, 44, 45, 48, 93, 166, 168, 188, 202, 208, 238 Uniaxial loading, 166–168, 172–173, 187 Unit cell, 16–22, 30–31, 35, 36 Universal testing machines, 42 Unloading, stress-strain curves for, 121, 166, 168 Upper yield point (UYP), 165, 166 V Vacancy, 23, 253 Vanadium in steel, 17, 83, 89 Vickers hardness test, 50, 51, 58, 60 Viscoelasticity, 3, 119–144 Volume fractions, in composites, 271, 274, 279, 281 Volumetric strain, 124–126, 138, 140, 141, 144 von Mises stress, 201–207, 211–213 W Weight percent element, 273 Welding, 39, 64, 215 Welding cracks, 215 White cast iron, 8, 83, 101 Wood, 267 Work hardening, 67, 112, 166, 201, 213 Work hardening exponent (n), 112 Working load, 12, 229 Working stress, 12, 13, 229, 231 Wrought aluminum alloys, 92 Y Yield criteria, 113–114 Yielding, 29, 45, 113, 121, 165, 166, 168, 201–203, 205, 206, 210, 213 Yield strength, 4, 8, 22, 29, 34–36, 45, 46, 57, 59, 66, 68, 72–74, 76, 78, 93, 102, 105, 121, 131, 141, 166, 168, 194, 198, 203, 208–210, 212, 213, 253 Young’s modulus, 42, 45, 46, 56, 60, 86, 95, 111, 115, 118, 119, 121, 124, 128, 142, 217, 218, 224, 226, 230, 231, 267, 269, 271–275, 277–281 Z Zinc, 16, 19, 25, 36, 82, 83, 92–94, 105 Zirconia, 96
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mechanical Behavior of Materials - Fundamentals, Analysis, and Calculations رابط مباشر لتنزيل كتاب Mechanical Behavior of Materials - Fundamentals, Analysis, and Calculations
|
|