Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mechanical Behavior of Materials - Engineering Methods for Deformation, Fracture, and Fatigue الإثنين 21 مارس 2022, 1:30 pm | |
|
أخواني في الله أحضرت لكم كتاب Mechanical Behavior of Materials - Engineering Methods for Deformation, Fracture, and Fatigue Fifth Edition Global Edition Norman E. Dowling Virginia Polytechnic Institute and State University Blacksburg, VA, USA Stephen L. Kampe Michigan Technological University Houghton, MI, USA Milo V. Kral University of Canterbury Christchurch, New Zealand
و المحتوى كما يلي :
Contents PREFACE 13 ACKNOWLEDGMENTS 18 1 Introduction 19 1.1 Introduction 19 1.2 Types of Material Failure 20 1.3 Design and Materials Selection 29 1.4 Technological Challenge 34 1.5 Economic Importance of Fracture 36 1.6 Summary 37 References 38 Problems and Questions 38 2 Structure, Defects, and Deformation in Materials 40 2.1 Introduction 40 2.2 Bonding in Solids 42 2.3 Structure in Crystalline Materials 45 2.4 Defects in Materials 48 2.5 Elastic Deformation and Theoretical Strength 53 2.6 Inelastic Deformation 58 2.7 Summary 63 References 64 Problems and Questions 64 3 Mechanical Testing: Tension Test and Stress–Strain Mechanisms 66 3.1 Introduction 66 3.2 Introduction to Tension Test 71 3.3 Engineering Stress–Strain Properties 76 3.4 Materials Science Description of Tensile Behavior 85 3.5 Trends in Tensile Behavior 89 78 Contents 3.6 True Stress–Strain Interpretation of Tension Test 95 3.7 Materials Selection for Engineering Components 106 3.8 Summary 112 References 113 Problems and Questions 114 4 Mechanical Testing: Additional Basic Tests 124 4.1 Introduction 124 4.2 Compression Test 124 4.3 Hardness Tests 129 4.4 Notch-Impact Tests 137 4.5 Bending and Torsion Tests 142 4.6 Summary 147 References 148 Problems and Questions 148 5 Stress–Strain Relationships and Behavior 153 5.1 Introduction 153 5.2 Models for Deformation Behavior 154 5.3 Elastic Deformation 165 5.4 Anisotropic Materials 177 5.5 Summary 186 References 188 Problems and Questions 188 6 Review of Complex and Principal States of Stress and Strain 196 6.1 Introduction 196 6.2 Plane Stress 197 6.3 Principal Stresses and the Maximum Shear Stress 207 6.4 Three-Dimensional States of Stress 215 6.5 Stresses on the Octahedral Planes 222 6.6 Complex States of Strain 224 6.7 Summary 229 References 230 Problems and Questions 230 7 Yielding and Fracture under Combined Stresses 236 7.1 Introduction 236 7.2 General Form of Failure Criteria 238 7.3 Maximum Normal Stress Fracture Criterion 240 7.4 Maximum Shear Stress Yield Criterion 243Contents 9 7.5 Octahedral Shear Stress Yield Criterion 249 7.6 Discussion of the Basic Failure Criteria 256 7.7 Coulomb–Mohr Fracture Criterion 262 7.8 Modified Mohr Fracture Criterion 272 7.9 Additional Comments on Failure Criteria 279 7.10 Summary 282 References 283 Problems and Questions 284 8 Fracture of Cracked Members 294 8.1 Introduction 294 8.2 Preliminary Discussion 297 8.3 Mathematical Concepts 304 8.4 Application of K to Design and Analysis 309 8.5 Additional Topics on Application of K 319 8.6 Fracture Toughness Values and Trends 331 8.7 Plastic Zone Size, and Plasticity Limitations on LEFM 341 8.8 Discussion of Fracture Toughness Testing 349 8.9 Extensions of Fracture Mechanics Beyond Linear Elasticity 350 8.10 Summary 357 References 360 Problems and Questions 362 9 Fatigue of Materials: Introduction and Stress-Based Approach 375 9.1 Introduction 375 9.2 Definitions and Concepts 377 9.3 Sources of Cyclic Loading 388 9.4 Fatigue Testing 390 9.5 The Physical Nature of Fatigue Damage 394 9.6 Trends in S-N Curves 399 9.7 Mean Stresses 411 9.8 Multiaxial Stresses 422 9.9 Variable Amplitude Loading 427 9.10 Summary 437 References 439 Problems and Questions 440 10 Stress-Based Approach to Fatigue: Notched Members 450 10.1 Introduction 450 10.2 Notch Effects 452 10.3 Notch Sensitivity and Empirical Estimates of kf 456 10.4 Estimating Long-Life Fatigue Strengths (Fatigue Limits) 46010 Contents 10.5 Notch Effects at Intermediate and Short Lives 465 10.6 Combined Effects of Notches and Mean Stress 469 10.7 Estimating S-N Curves 479 10.8 Use of Component S-N Data 485 10.9 Designing to Avoid Fatigue Failure 494 10.10 Discussion 500 10.11 Summary 501 References 502 Problems and Questions 503 11 Fatigue Crack Growth 517 11.1 Introduction 517 11.2 Preliminary Discussion 518 11.3 Fatigue Crack Growth Rate Testing 526 11.4 Effects of R = Smin/Smax on Fatigue Crack Growth 530 11.5 Trends in Fatigue Crack Growth Behavior 541 11.6 Life Estimates for Constant Amplitude Loading 544 11.7 Life Estimates for Variable Amplitude Loading 558 11.8 Design Considerations 563 11.9 Plasticity Aspects and Limitations of LEFM for Fatigue Crack Growth 566 11.10 Summary 572 References 573 Problems and Questions 575 12 Environmentally Assisted Cracking 589 12.1 Introduction 589 12.2 Definitions, Concepts, and Analysis 592 12.3 EAC in Metals: Basic Mechanisms 595 12.4 Hydrogen-Induced Embrittlement 599 12.5 Liquid Metal Embrittlement 601 12.6 EAC of Polymers 604 12.7 EAC of Glasses and Ceramics 608 12.8 Additional Comments and Preventative Measures 610 References 610 Problems and Questions 611 13 Plastic Deformation Behavior and Models for Materials 614 13.1 Introduction 614 13.2 Stress–Strain Curves 617 13.3 Three-Dimensional Stress–Strain Relationships 625Contents 11 13.4 Unloading and Cyclic Loading Behavior from Rheological Models 635 13.5 Cyclic Stress–Strain Behavior of Real Materials 644 13.6 Summary 656 References 658 Problems and Questions 659 14 Stress–Strain Analysis of Plastically Deforming Members 668 14.1 Introduction 668 14.2 Plasticity in Bending 669 14.3 Residual Stresses and Strains for Bending 680 14.4 Plasticity of Circular Shafts in Torsion 683 14.5 Notched Members 686 14.6 Cyclic Loading 698 14.7 Summary 709 References 710 Problems and Questions 711 15 Strain-Based Approach to Fatigue 721 15.1 Introduction 721 15.2 Strain Versus Life Curves 724 15.3 Mean Stress Effects 734 15.4 Multiaxial Stress Effects 743 15.5 Life Estimates for Structural Components 747 15.6 Additional Discussion 758 15.7 Summary 765 References 766 Problems and Questions 767 16 Time-Dependent Behavior: Creep and Damping 777 16.1 Introduction 777 16.2 Creep Testing 779 16.3 Physical Mechanisms of Creep 784 16.4 Time–Temperature Parameters and Life Estimates 796 16.5 Creep Failure under Varying Stress 809 16.6 Stress–Strain–Time Relationships 810 16.7 Creep Deformation under Varying Stress 817 16.8 Creep Deformation under Multiaxial Stress 823 16.9 Component Stress–Strain Analysis 82512 Contents 16.10 Energy Dissipation (Damping) in Materials 830 16.11 Summary 839 References 841 Problems and Questions 842 Appendix A Review of Selected Topics from Mechanics of Materials 854 A.1 Introduction 854 A.2 Basic Formulas for Stresses and Deflections 854 A.3 Properties of Areas 856 A.4 Shears, Moments, and Deflections in Beams 858 A.5 Stresses in Pressure Vessels, Tubes, and Discs 858 A.6 Elastic Stress Concentration Factors for Notches 863 A.7 Fully Plastic Yielding Loads 864 References 873 Appendix B Statistical Variation in Materials Properties 875 B.1 Introduction 875 B.2 Mean and Standard Deviation 875 B.3 Normal or Gaussian Distribution 877 B.4 Typical Variation in Materials Properties 879 B.5 One-Sided Tolerance Limits 880 B.6 Discussion 882 References 883 Appendix C A Survey of Engineering Materials 884 C.1 Introduction 884 C.2 Alloying and Processing of Metals 885 C.3 Irons and Steels 891 C.4 Nonferrous Metals 899 C.5 Polymers 903 C.6 Ceramics and Glasses 912 C.7 Composite Materials 917 C.8 Summary 923 References 924 ANSWERS FOR SELECTED PROBLEMS AND QUESTIONS 926 BIBLIOGRAPHY 937 INDEX 95 Index For these indexed items, where a topic is discussed continually over more than one page, or on multiple pages in a section of the book, the initial page is given. Page numbers are given for tables with materials properties or other information. A AASHTO bridge design code, 493 Activation energy, 599, 787, 789, 792, 799, 799 (table), 801 Aging, 890, 901 AISI nomenclature, 892, 894 (table), 897, 898 Albert, W. A. J., 376 Allowable stress design, 32, 257 Alloying, 47, 885, 910 compositions (tables), 892, 894, 900, 901 Alumina (Al2O3), 48, 915 Aluminum alloys, 900 examples (table), 901 nomenclature (table), 900 Amorphous structure: glasses, 916 polymers, 48, 906 Amplitude (of stress), 378 Amplitude–mean diagram, 412 Anelastic strain, 164, 830 Anisotropic, anisotropy, 54 elastic, 178 yield criteria for, 259 Annealing, 887 Aramid, 905 Areas, properties, 856 Arrhenius equation, 599, 786, 787, 789, 798 ASTM Standards, 69, 71 (table), 103, 137, 140, 142, 148 creep, 841 CTOD fracture, 357, 360 cycle counting, 432, 439 environmentally assisted cracking, 592, 601, 606, 610 fatigue crack growth, 526, 529, 573 fatigue, low-cycle, 644, 658, 724, 766 fatigue, stress-based, 390, 439 fracture toughness, 331, 349, 350, 356, 357, 360 J-integral fracture, 353, 356, 360 steel specifications, 897, 924 Ausforming, 898 Austenite, 896 AWS weld design code, 491, 493 B Bailey bridge, 485 Bauschinger effect, 616, 639 Beach marks, 395 951952 Index Beams (see also Bending) shears, moments, and deflections, 858 Bending: creep in, 826, 828 cyclic loading analysis, 698 elastic case, 669, 854, 858 fatigue tests, 390 fracture specimen, 310, 331, 355 plasticity analysis fully plastic case, 676, 677, 867 by integration, 671 for various σ-ε curves, 673–679 residual stresses and strains, 680 tests, 89, 142, 858 on ceramics (tables), 92, 134 Biaxial stress (see Multiaxial stress) Blunting line, 357 Body-centered cubic structure, 46 Bolt design, 496, 601 Bonding, chemical, 42, 86 Bridgman triaxiality correction, 99 Brinell hardness test, 131 values (tables), 107, 137 Brittle behavior, 21 (see also Fracture criteria) crack effects on, 87, 260, 282, 299 fracture criteria, 240, 260, 262, 272 multiaxial stress effect on, 279 in notch fatigue, 470 in notched members, 868 in tension, 87 Brittle fracture, 23, 294, 299, 302 (see also Fracture toughness) after fatigue growth, 541, 551 Buckling, 22, 125 Budynas, R. G.: fatigue limit estimate, 463, 464 (table) S-N curve estimate, 479, 480 (table) Bulk modulus, 174 C Casting, 885 Cast irons, 891, 893 Cemented carbides, 915 Cementite (Fe3C), 895 Center-cracked plate, 299, 307, 526 Ceramics, 40, 41 (table), 47, 912 creep in, 788 crystal structures, 47 fracture criteria, 240, 260, 262, 272 fracture toughness, 301 (table), 333 properties (tables), 57, 92, 134, 166, 266, 301, 881 uses (table), 913 Cermets, 915 Chain molecules, in polymers, 41, 45, 63, 88, 788, 904 Charpy test, 138 Chemical bonding, 42, 86 Circular crack, 319 Circumferential crack, 311 Clay products, 914 Cleavage, 337, 543 Climb, dislocation, 790 Closed loop testing machine, 68, 393 Close-packed planes, directions, 61 Coble creep, 790 Coefficient of variation, 876, 880 (table), 881 (table) Coffin, L. F., 726, 810 Coherent precipitate, 889, 890, 919 Cohesive strength, 56, 86 Cold rolling, 498 Cold work, 886 Compact fracture specimen, 313, 331, 355, 526 Completely reversed cycling, 379 Compliance method, 309, 354 Component tests, 33 S-N curves from, 485, 500 Composite materials, 40, 41 (table), 912, 917, 918 (table) elastic constants, 180, 181 (table) fatigue, 395, 402 fracture criteria, 260 properties (tables), 93, 181 Compression test, 124 with lateral pressure, 129, 265, 272 strengths from (tables), 92, 266, 881 Concrete, 266 (table), 795, 881 (table), 914 Constant amplitude stressing, 377 Constant-life diagram, 411 Constraint, geometric, 344, 347, 694, 873 Copper alloys, 902 Corner crack, 320 Corrosion, 20 and fatigue, 28, 403, 543, 594, Corten–Dolan method, 500 Cost of fracture, 36, 376Index 953 Cost of materials, relative, 108 (table), 111 Coulomb–Mohr criterion, 263 Covalent bond, 42, 44, 47 Cracks, 23, 52, 294, 309, 319 in environmentally assisted cracking, 517, 589 in fatigue, 395, 517, 733, 762 inclined, 327 inspection for, 295, 519, 564 mixed-mode, 328, 340 at notches, 324, 454 surface, 319 Crack growth (see Fatigue crack growth; Environmentally assisted cracking) Crack growth retardation, 562 Crack initiation, 394, 733, 762 Crack-tip opening displacement, 298 (see also CTOD) Crack velocity, 592, 594 (table), 595, 608 Creep, 22, 61, 154, 777 component σ-ε analysis, 825 cycle-dependent type, 653, 759 life estimates, 796, 808 multiaxial stress, 176, 808, 823 physical mechanisms, 61, 784, 790 (table) rate equations, 786, 789 rheological models, 159, 810, 817 steady-state (secondary stage) type, 154, 160, 780, 781, 788, 812, 814 stress–strain–time relations, 792, 810, 816 (table), 823 tertiary stage, 780 testing, 779, 841 time-temperature parameters, 796, 802 (table) transient (primary stage) type, 155, 161, 780, 812, 814 varying stress, 809, 817 Creep cavitation, 796 Creep–fatigue interaction, 403, 733, 809 Creep rupture, 26, 796 (see also Creep) Critical plane approach, 426, 745 Cross-linking, 907, 909 Crystalline grains, 48 Crystalline structure, 45 ceramics, 47 metals, 46–47 polymers, 48, 905, 910 CTOD, 298 in cyclic loading, 566 in J-integral testing, 357 test standards, 357 Cubic material, 180 Cumulative fatigue damage (see Palmgren–Miner rule; Variable amplitude loading) Cycle counting, 427, 430, 652, 752, 756 Cycle-dependent creep, 653, 759 Cycle-dependent hardening, softening, 645 Cycle-dependent relaxation, 653, 759 Cyclic loading: description of, 377, 521 reological modeling for, 635, 640, 642 sources of, 388 stress analysis for, 698 stress–strain behavior, 616, 644 Cyclic stress–strain curve, 641, 641 (table), 646, 722, 727 (table), 729 Cyclic yield strength, 647 D Damage-tolerant design, 303, 520, 563 Damping, 779, 830 in components, 837 definitions for, 833 physical mechanisms, 833, 835 rheological modeling of, 830 Defects in materials, 48 Deflections, 855, 858 Deformation, 20, 153 (see also Creep; Elastic deformation; Plastic deformation) types (table), 154 Deformation mechanism maps, 792 Deformation plasticity theory, 617, 626, 634 Deformation processing, 885 Delayed fracture, 601 Density (tables), 92, 108, 181, 886 Design, 29 creep, 778, 791 environmentally assisted cracking, 591, 598, 601, 604, 608, 610 damage-tolerant type, 303, 520, 563 fatigue, 494 fatigue crack growth, 563 Design truck, 493 Diamond cubic structure, 44, 47, 916 Diffusion, 599, 788 Diffusional flow, 61, 788954 Index Dimpled rupture, 337 Disc, rotational stresses, 862 Dislocation, 50 (see also Creep; Plastic deformation) Dislocation creep, 790 Dispersion hardening, 919 Distortion energy criterion, 249, 253 Ductile behavior, 21, 86, 88 (see also Yield criteria) in compression, 127 crack effect on, 302 multiaxial stress effect on, 279 notched members, 868 in notch fatigue, 465, 469, 470 Ductile fracture, 24, 350 Ductility, 79, 80, 85, 88 (see also Tension test) Durability, 30 Durability testing, 33 Dynamic modulus, 833 Dynamic recrystallization, 797 Dynamic tear test, 138 E Economics of fracture, 36, 376 Edge dislocation, 50 Effective strain, 626, 629 in fatigue, 744 Effective strain rate, 824 Effective stress, 239, 240, 245, 251, 270, 275, 424, 626, 824 Effective stress–strain curve, 629 Elastic deformation, 21, 53, 165 anisotropic case, 177 constants for (tables), 166, 181 isotropic case, 165 orthotropic case, 179 physical mechanisms, 53, 86 with plastic deformation, 625 Elastic modulus, 21, 53, 77, 156, 165 elastomers, 909, 910 fibrous composites, 180, 181 (table), 182, 183, 920 single crystals, 54 thermoplastics, 906 trends, 54, 86 values (tables), 90–93, 108, 134, 166, 181, 727, 886, whiskers, fibers, 57 (table) Elastic stress concentration factor, 297, 379, 452, 687, 864 (see also Notches) Elastically calculated stress, 692 Elastomers, 903, 909 Elliptical crack, 320 Elongation, 22, 79, 80 values (tables), 90, 91, 93, 300 Endo, T., 430 Endurance limit, 382 (see also Fatigue limit) Energy, impact, 91 (table), 140 Energy of distortion criterion, 249, 253 Engineering shear strain, 224, 626 Engineering size crack, 764 Engineering stress and strain, 73, 77, 79, Environmentally assisted cracking (EAC), 25, 517, 589 crack velocity, 592, 594 (table), 595, 599, 601, 608 delayed fracture, 601 design considerations, 591, 598, 601, 604, 608, 610 EAC threshold, 592, 594 (table), 601, 603 environment stress cracking (ESC), 590, 604 fractography, 596–598 hydrogen-induced embrittlement, 590, 597, 599 intergranular fracture, 25, 595, 599, 601 life estimates, 594, 609 liquid metal embrittlement (LME), 590, 601, 602 (table) metallography, 596, 601 prior austenite grains, 600, 601 sensitization, 25, 595 solubility parameter, 605, 605 (table) static fatigue, 590, 608 stress corrosion cracking (SCC), 25, 590, 594, 595 transgranular fracture, 595 Environmental effects, 25 (see also Environmentally assisted cracking) fatigue, 403 fatigue crack growth, 517, 543 at high temperature, 778, 809 static fracture, 282 Environment stress cracking (ESC), 590, 604 Equivalent completely reversed stress, 416, 420, 470, 736 Equivalent constant amplitude stress, 435, 494, 560Index 955 Equivalent life, for zero-mean-stress, 736, 737, 740, 741 Extensometer, 68 F Face-centered cubic structure, 46 Factor of safety (see Safety factor) Failure criteria, 236, 238 (see also Fracture criteria; Yield criteria) discussion of, 279 Failure surface, 239 (see also Fracture criteria; Yield criteria) Failures, 20 brittle fracture, 294, 299 creep, 779 environmental, 589 fatigue, 376 fatigue crack growth, 517 plastic collapse, 668, 677 Fatigue, 26, 375 (see also Fatigue crack growth; Fatigue limit; Mean Stress; Strain-based fatigue; Variable amplitude loading) approaches, 376, 721 with creep, 403, 733, 809 definitions, 377 design for, 494 discussion, 500, 758 fracture appearance, 395–397 high-cycle vs. low-cycle, 27, 383, 729 mean stress effect, 377, 402, 411, 469, 481, 487, 734 microstructural effects, 405 multiaxial stress, 422, 743 notch effects, 403, 452, 456, 465, 469, 747 notch factor, 452, 456, 494, 765 empirical estimates, 456 at finite life, 465, 759 for mean stress, 469, 759 physical mechanisms, 394, 566 size effect, 452, 461, 733 S-N curves, 380, 382, 485, 724 for components, 485 constants for (tables), 383, 727 equations for, 382 estimation of, 460, 464 (table), 479, 480 (table) safety factors for, 386, 420 Walker equation fit, 475 statistical scatter, 409 surface effects, 406, 461, 498, 733 tests, 377, 390, 485, 644, 724 trends, 399, 461, 730, 733 variable amplitude loading, 388, 427, 487, 751, 738 Fatigue crack growth, 27, 517 definitions, 520 design considerations, 518, 563 life estimates, 544, 558 plasticity aspects, 562, 566 rate of, 521, 526 rate equations, 521, 533, 537, 539 constants for (tables), 524, 535, 538 R-ratio effects, 523, 530 safety factors for, 519, 563 small crack effects, 570 in strain-based fatigue, 733, 764 tests, 526 threshold, 521, 537, 540, 571 trends, 541 variable amplitude loading, 558, 562 Fatigue limit, 382, 400, 407 crack effect, 454, 500, 571, 765 estimating, 400, 460 reduction factors, 462, 464 (table) variable amplitude effects, 408, 429, 763 Fatigue notch factor, 452 (see also Fatigue; Fatigue limit) Fatigue strength, 382 Ferrite, 895 Fibers, 919 (see also Composite Materials) properties (tables), 57, 181 Finite element analysis, 154, 259, 314, 379, 670, 692 Flexure test, 142 (see also Bending) Forman equation, 537, 538 (table) Fractography, 337, 596–598 Fracture, 20, 23, 294 (see also Fracture toughness) types of, 23 in brittle materials, 87, 89 Fracture criteria, 236, 279 brittle materials. 260 Coulomb–Mohr, 262 discussion, 260, 279 maximum normal stress, 240 modified Mohr, 272 Fracture mechanics, 23, 294 CTOD approach, 357 for environmentally assisted cracking, 592956 Index Fracture mechanics (Continued) for fatigue crack growth, 376, 517, 529 J-integral approach, 352 LEFM approach, 299, 304, 305 plasticity limitations, 344, 568 small crack limitations, 570 stress field equations, 305 Fracture mechanism maps, for creep, 782 Fracture modes, 304, 327, 340 Fracture strain, engineering, 79 (see also Elongation) Fracture strain, true, 103, 107 (table), 730, 731 Fracture strength, engineering, 78 Fracture strength, true, 103, 382, 414, 730, 731, 737 values of (tables), 107, 383, 727 Fracture surface, 239 (see also Fracture criteria) Fracture toughness, 23, 299 in cyclic loading, 541, 551 J-integral testing, 354 microstructural effects, 338 mixed-mode, 340 temperature and rate effects, 334 testing, 331, 347, 349, 354 thickness effect, 299, 331, 347, 350 trends, 331 values of (tables), 300, 301, 535, 538, 594, 881 Frequency effects, 403, 543, 833 Frequency-modified fatigue, 810 Fretting, 28, 496 Fully plastic behavior, 864 in bending, 676, 867 in cracked members, 317, 346, 350, 551, 868 in cyclic loading, 468, 551 in notched members, 690, 868 in torsion, 867 G Gaussian distribution, 877 Generalized plane stress, 206 Generalized Poisson’s ratio, 628, 694 Geometric constraint effects, 344, 347, 694, 873 Gerber parabola, 414 Glass transition temperature, 54, 63, 788, 906, 907 (table), 909, 910 Glasses, 40, 912, 913 (table), 916 properties of (tables), 57, 92, 134, 166, 181, 301 Glide (dislocation), 790 Glinka’s rule, 693 Goodman equation, modified, 414, 469, 487 Grain boundary sliding, 788 Grain refinement, 887 Grains, crystalline, 48 Griffith, A. A., 304, 305 H Hardness tests, 129 values from (tables), 107, 134, 137 Heat-deflection test, 144 temperatures from (table), 91 Heat treatment, 885, 889, 891, 899 Hexagonal close-packed structure, 47 High-cycle fatigue, 27, 383, 729 Hill criterion, 259 Homogeneity, 165 Hooke’s Law, 168, 175 anisotropic case, 178 constants for (tables), 166, 181 orthotropic case, 179 with plasticity, 625 Hot isostatic pressing, 915 Hydrogen bond, 45 Hydrogen-induced embrittlement, 590, 597, 599 Hydrostatic stress, 173 fracture effect, 261, 279 as octahedral stress, 222 yielding effect, 238, 246, 252, 253, 260, 280 Hysteresis loop, 640, 643, 645 curve shapes, 649 I Impact energy tests, 91 (table), 137 Impact loading, 23, 137 (see also Rate effects) Inclusions, 52 fatigue effect, 395 fracture effect, 295, 338 Incremental plasticity theory, 617, 634, 747 Indentation hardness, 129 Inspection, for cracks, 52, 295, 519, 564 Instron testing machine, 68 Intergranular fracture, 25, 566, 595, 599, 601 Intermetallic compound, 44, 48, 52, 889, 903, 922 Internal friction, 830 (see also Damping) Internally flawed material, 303 Interstitials, 49, 833, 888, 896Index 957 Invariants, stress, 219 Ionic bond, 42, 47 Irons, cast, 891, 893 Irregular load–time histories (see Variable amplitude loading) Irwin, G. R., 305, 344 Isochronous σ-ε curves, 784, 813, 814, 825, 828 constants for (table), 816 Isotropic, isotropy, 54, 165 Isotropic hardening, 617 Izod test, 91 (table), 138 J J -integral, JIc tests, 352, 354 Juvinall, R. C.: mean stress approach, 472 fatigue limit estimate, 463, 464 (table) S-N curve estimate, 479, 480 (table) K K -field, 344 Kinematic hardening, 617, 635, 639 L Laminated composites, 922 Larson–Miller parameter, 801, 802 (table) Lattice, 48 Leak-before-break, 328 Linear-elastic fracture mechanics (LEFM), 299, 304, 305 (see also Fracture mechanics) Linear elasticity, 165 (see also Elastic deformation; Hooke’s Law) Linear hardening, 157, 619 Linear viscoelasticity, 159, 810 component analysis, 825 damping, 830 varying stress, 819 Liquid metal embrittlement (LME), 590, 601, 602 (table) Load cell, 68 Load factor design, 32, 257, 421, 436, 493 Loads (see Cyclic loading, Static loading, etc.) Loads, fully plastic (see Fully plastic behavior) Local yielding, 379, 455, 465, 470, 686 (see also Notches) Log decrement, 833 Loss coefficient, 833 Low-alloy steel, 897 Low-cycle fatigue, 27, 383, 729 M Machines, testing, 67, 390, 779 Magnesium alloys, 902 Magnetoelastic effect, 835 Manson, S. S., 726, 810 Maps, deformation mechanism, 792 Maps, fracture mechanism, for creep, 782 Martensite, 896 Materials damping, 779, 830 (see also Damping) Materials selection, 29, 106 Maximum normal stress criterion, 240, 260, 272, 273, 275 Maximum shear stress criterion, 243, 256 Mean stress, 377, 402, 411, 420, 487 equivalent life for, 736, 737, 740 in fatigue crack growth, 523, 530 Gerber parabola, 414 Goodman equation, modified, 414, 469, 487 Morrow equation, 414, 737, 738 in notched members, 469, 481, 487, 500, 747, 759 in strain-based fatigue, 734, 747, 756, 759 SWT parameter, 415, 472, 487, 739 Walker equation, 415, 472, 475, 487, 532, 740 yielding effect on, 470, 500, 759 Mean stress relaxation, 653 Metallography, 596, 601 Melting temperature (tables), 92, 886, 907 Memory effect, 159, 635, 643, 652, 706, 752 Metallic bond, 42 Metals, 40, 41 (table), 44, 885, 886 (table), 891, 899 creep, 788, 796, 813 crystal structures, 46 cyclic deformation, 641 (table), 644, 727 (table) damping, 833, 835 elastic constants, 166 (table), 167 fatigue, 383 (table), 394, 399, 727 (table), 730 fatigue crack growth, 541 constants for (tables), 524, 535, 538 fracture criteria, 256, 260 fracture toughness, 300 (table), 331, 881 (table)958 Index Metals (Continued) hardness, 107 (table), 135 strengthening methods, 61, 885, 887 (table), 895–903 tension (tables), 90, 107, 727 yield criteria, 256 Microstructural effects, 40 creep, damping, 784, 833 fatigue, 405 fatigue crack growth, 543, 566 ,570 fracture toughness, 338 tension, 85 Microvoid coalescence, 337 Miner’s rule, Miner, M. A., 427, 428 Minimum detectable crack, 519, 564 Mirone triaxiality correction, 100 Mixed-mode fracture, 327, 340 Modes of cracking, 304, 327, 340 Models, rheological (see Rheological models) Modified Goodman equation, 414, 469, 487 Modified Mohr criterion, 272 Modulus: bulk, 174 in damping, 830, 833 elastic (Young’s), 21, 77 (see also Elastic modulus) rupture, in bending, 143 secant, 627, 628, 784, 823 tangent, 77 Mohr’s circle: plane strain, 225 plane stress, 202, 212 for strains, 226 three-dimensional cases, 209, 217 Mohs hardness scale, 130 Moment, fully plastic, 676, 690, 867 Monotonic loading, 615, 634, 642 Morrow equation, 414, 737, 738 MTS Systems Corp., 68 Multiaxial stress (see also Fracture criteria; Yield criteria) in creep, 808, 823 elastic case, 168, 178 elasto-plastic case, 625 in plane stress, 630 in pure shear, 684 in fatigue, 422, 743 principal stresses and strains, 196 N Nabarro–Herring creep, 790 Naming systems (see Nomenclature) Necking, 80, 98, 99 Network modifiers, 916 Neuber constant, 458 Neuber’s rule, 690, 693, 696, 702, 705, 747 Neutron radiation effect, 339 Nomenclature: aluminum alloys, 900, 900 (table) irons and steels, 892, 894 (table), 897 stainless steels, 898 tool steels, 898 Nominal stress, 309, 379, 452, 686, 747, 863 Nondestructive testing, 52, 295, 519, 564 Nonlinear hardening, 620, 624 Nonpropagating cracks, 455, 765 Nonproportional loading, 634, 693, 709, 743, 745 Normal distribution, 877 Normal stress fracture criterion, 240, 260, 272, 273, 275 Normalized amplitude–mean diagram, 412 Notch-impact tests, 137 energy from (table), 91 Notch sensitivity, 456 Notches, notched members, 863 cracks at, 324, 454 cyclic loading analysis, 702, 705, 747 elliptical shapes, 297 fatigue effects, 403, 450, 452, 456, 465, 489, 500, 747 with mean stress, 469, 747, 756, 759 fully plastic loads, 690, 868 geometric constraint, 694, 873 initial yielding, 687 local yielding analysis, 465, 470, 686 Neuber’s rule for, 690, 693, 747 strain energy (Glinka) method, 693 residual stresses, 498, 500, 695 in strain-based fatigue, 747 strain concentration factor, 687, 690 stress concentration factor, 297, 452, 687, 690, 863 in test specimens, 67, 138, 394 ultimate strength for, 469, 873 Numerical analysis (see Finite element analysis) Numerical integration, 554, 558Index 959 O Octahedral planes, 222 Octahedral shear criterion, 249 Octahedral stresses, 222, 249, 626 Offset yield strength, 78 (see also Yield strength) Orthotropic material, 179 Overload effects, 408, 428, 500, 562, 759, 762 P Palmgren–Miner rule, 427, 435 in creep-fatigue interaction, 809 relative form, 500 for notched members, 487, 493 in strain-based fatigue, 751, 756, 762 Paris equation, 521, 524 (table) Particulate composites, 918 Peak, 430 Pearlite, 895 Percent elongation, 22, 79, 80 (see also Elongation) Percent reduction in area, 80, 81 (see also Reduction in area) Perfectly plastic behavior, 157, 617, 865 bending, 676, 867 at notch, 692, 868 residual stresses, for bending, 680 torsion, 685, 686, 867 Peterson constant, 456 Phase shift, 830 Phase strengthening, 889, 902, 903 Plain-carbon steel, 895 Plane strain, 224, 299 crack plastic zone, 344 fracture effect, 299, 347, 349, 350 in notch, 694, 873 Plane stress, 197, 212, 225 crack plastic zone, 343 fracture effect, 347, 350 generalized, 206 Mohr’s circle for strains, 225 plastic deformation, 630 Plastic collapse, 668, 676, 864 Plastic deformation, 21, 58, 78, 157, 614 in bending, 669, 867 component analysis for, 668, 864 cyclic loading, 616, 644 of components, 698, 747 damping due to, 835 deformation theory, 616, 626, 634 by dislocation motion, 58, 85 engineering significance, 614, 668, 721 fracture mechanics methods for, 350 incremental theory, 617, 634, 747 memory effect, 159, 635, 643, 652, 706, 752 multiaxial loading, 176, 625 at notches, 686, 868, 873 effects in fatigue, 455, 465, 470, 747, 756, 759 physical mechanism, 58, 85 rheological modeling, 154, 617, 619, 624, 635 stress–strain curves, 617 in torsion, 683, 867 variable amplitude loading, 649, 705, 751 Plastic hinge, 677 Plastic modulus, 627 Plastics (see Polymers) Plastic strain, 21, 78, 79, 85, 157, 617, 625 (see also Plastic deformation) Plastic strain damping, 835 Plastic zone, 298, 341 adjustment to crack, 351 in cyclic loading, 566 plane strain, 344 plane stress, 343 Plasticizers, 911 Plating, 406, 499 Point defect, 48 Point stress, 379 Poisson’s ratio, 166 (table), 166, 176 anisotropic case, 179 fibrous composites, 180, 181 (table), 185 generalized form, 628, 694 Polycrystalline materials, 48 Polymers, 40, 41 (table), 45, 903, 904 (table) creep, 62, 788 crystalline structure, 48 cyclic deformation, 646, 649 damping, 836 deformation, 62, 85, 87 fatigue, 399, 402, 403, 726 fatigue crack growth, 542 fracture toughness, 301 (table), 332 properties (tables), 91, 166, 301, 605, 907 yield criteria, 260 Poncelet, J. V., 376 Pop-in crack, 349 Pores, porosity, 51 Potential energy, in fracture, 304, 352960 Index Power hardening, 102, 620 in stress–strain analysis: bending, 673 notched members, 692 torsion, 686 Power-law creep, 790, 813, 818, 829 Precipitate, coherent, 889, 890, 919 Precipitation hardening, 889, 898, 899, 901, 902 Precrack, 350, 526 Presetting, 406, 498 Pressure effects, 238, 246, 252, 260, 261, 279, 280 Pressure vessels: leak-before-break design, 328 stresses, 858 Primary bonds, 42 Primary stage (transient) creep, 155, 161, 780, 810 (see also Creep) Principal normal stresses, 199 axes (directions), 199, 206, 217, 219 from Mohr’s circle, 202, 207, 209 plane stress, 199, 212 three-dimensional cases, 206, 207, 217, 218 Principal normal stress space, 239 Principal shear stresses, planes, 200, 208, 212 Principal strains, 224 Prior austenite grains, 600 Probabality, 877 Processing: ceramics, 915 glasses, 916 metals, 885, 887 (table) polymers, 903, 909–912 Process zone size (in fatigue), 452 Proportional limit, 78 Proportional loading, 241, 634 Q Quality factor, 833 Quasi-isotropic material, 185 Quenching and tempering, 895 R Radiation embrittlement, 339 Rainflow cycle counting, 430, 652, 752, 756 Ramberg–Osgood relation, 620 biaxiality effect, 631 cyclic loading, 647 constants for (tables), 641, 727 pure shear, 684 in stress–strain analysis: bending, 677 notched members, 692 torsion, 686 for tension test, 103, 107 (table) time variable added, 814 Range of stress, 377, 430, 521 Ratchetting, 653 Rate (frequency) effects in: fatigue, 403 fatigue crack growth, 543 fracture, 282 fracture toughness, 334 tension test, 92 R-curve, 356 Reciprocating bending test, 392 Recovery, 156, 161, 164, 788, 796, 817 Reduction in area, 80, 81 values (tables), 90, 300, 727 Refractory metals, 885 Reinforced polymer, 912 Relative Palmgren–Miner rule, 500 Relaxation, 161, 818 cycle dependence, 653, 759 Reliability, 879 Remnant displacement, 831 Residual stress: for bending, 680 in fatigue, 406, 486, 498, 500 at notches, 498, 500, 695 Resistance curve, 356 Reversed yielding, at notches, 455, 465, 470 Rheological models, 154 creep, 159, 788, 810 cyclic loading, 635, 640 damping, 830 irregular histories, 642 linear viscoelasticity, 810 nonlinear hardening, 624 plasticity, 157, 617, 619, 624 recovery in, 161, 817 relaxation in, 161, 818 unloading of, 635 Rock, 914 (see also Stone) Rockwell hardness test, 134, 135 (table), 137 (table)Index 961 Rosettes, strain gage, 228 Rotating bending test, 390 Rotating disc, stresses, 862 R-ratio, 378, 521 crack growth effects, 523, 530 S-N effects, 411, 415, 472 (see also Mean stress) Rupture: in creep, 26, 796 (see also Creep) modulus in bending, 143 S SAE nomenclature, 892, 894 (table) Safety, 30 Safety factor, 31, 239 (see also Fracture criteria; Yield criteria) brittle fracture, 312 cracked members, 316 crack growth, 519, 564 creep rupture, 806 fatigue, 386, 420, 436, 493 Safety margin in temperature, 806 Screw dislocation, 50 Secant modulus, 627, 628, 784, 823 Secondary bonds, 44 Secondary stage (steady-state) creep, 154, 160, 780, 788, 810 (see also Creep) Sensitization, 25, 595 Sequence effects, 408, 428, 500, 562, 759, 762 Service experience, 34 Servo-hydraulic machines, 68, 393 Shear lip, 397 Shear modulus, 169, 178, 179 fibrous composites, 180, 181 (table), 185 Shear stress yield criterion, 243, 256 Sherby–Dorn parameter, 798, 799 (table) Shigley S-N curve estimate, 479 (see also Budynas, R. G.) Short cracks in fatigue, 570 Shot peening, 406, 498 Silica (SiO2), 912, 914, 916 Simpson’s rule, 555 Simulated service testing, 33 Sintering, 51, 915 Size effect, in fatigue, 452, 462, 733 Size scales, 41 Slip band, 52 Slip, in crystals, 58, 87, 88 Slow-stable cracking, 349, 350, 354 Small cracks in fatigue, 395, 570, 733 Smith, Watson, Topper (SWT) parameter, 415, 472, 487, 739 S-N curves, 380, 479, 485 (see also Fatigue) Snoek effect, 833 Solid solution strengthening, 888, 899, 902 Solubility parameter, 605, 605 (table) Solution heat treatment, 889, 898, 899, 901, 902 Specimens, test, 66, 331, 394, 526 Standard test methods, 68 (see also ASTM Standards; Tests) Static fatigue, 590, 608 Static loading, 23, 388 Stationary loading, 559 Statistical variation, 875 in fatigue life, 409 in fracture toughness, 334, 880, 881 (table) in materials properties, 879, 880 (table) Steady-state (secondary stage) creep, 154, 160, 780, 788, 810 (see also Creep) Steels, 891 (see also Metals) types, examples (tables), 891, 892, 894 Stone, 914 properties, uses (tables), 92, 166, 266, 301, 881, 913 Storage modulus, 833 Strain, engineering, 73, 79 Strain, true, 95 Strain-based fatigue, 376, 721 component life estimates, 747 crack growth effects, 733, 764 discussion, 758 mean stress effect, 734, 747, 756, 759 multiaxial stress, 743 sequence effects, 759, 762 strain–life curves, 722, 724, 727 (table), 729 factors affecting, 733 transition life, 729 trends, 730 variable amplitude loading, 751, 756, 759, 762 Strain concentration factor, 687, 690 (see also Notches) Strain energy release rate, 304, 352 Strain gages, rosettes, 68, 228 Strain-hardening exponent, 102, 620 for cyclic loading, 641 (table), 647, 727 (table), 730 in tension test, 102, 103, 107 (table) Strain hardening ratio, 82962 Index Strain-hardening rule, 821 Strain–life curves, 722, 724, 727 (table) (see also Strain-based fatigue) Strain-range partitioning, 810 Strain rate effects, 92 (see also Rate effects) Strain transformation, 224 Strength, theoretical cohesive, 56, 86 Strengthening methods, 61, 885, 887 (table), 895–903, 909, 910 Strength properties (see also Compression test; Tension test) in bending, 134 (table), 142 in materials selection, 106 in tension, 77, 103 in torsion, 144 Stress: basic formulas for, 854 engineering type, 73, 77 nominal type, 379 in pressure vessels, tubes, discs, 858 principal values, 196, 199, 206, 218 terms for cycling, 377 true type, 95 Stress amplitude, 377 Stress-based fatigue, 375, 450 (see also Fatigue) discussion, 500, 758 Stress concentration, 67, 297, 379, 450, 863 (see also Notches) Stress corrosion cracking (SCC), 25, 590, 595 (see also Environmentally assisted cracking) Stress field (at crack), 305 Stress gradient, size effect due to, 452, 461, 733 Stress intensity factor, 305, 309, 319 for crack growth, 518, 521, 529, 592 Stress invariants, 219 Stress–life curves: fatigue, 380 (see also S-N curves; Fatigue) creep, 781, 797, 806 Stress raiser, 67, 297, 379, 450, 863 (see also Notches) Stress range, 377, 430, 521 Stress ratio, 378 (see also R-ratio) Stress redistribution, 299, 343 Stress relaxation, 161, 818 Stress relief, 500 Stress–strain curves, 74, 617 biaxiality effect, 630 compression, 127, 128 cyclic loading, 641 (table), 646, 727 (table) equations for, 102, 617, 647 hysteresis loops, 640, 643, 645, 649 pressure effects, 279 pure shear case, 684 tension test, 74, 85, 89, 102 time variable added, 791, 810, 816 (table) types, for different materials, 74 unloading, 617, 637, 639 Stress transformation, 198, 215 Striations, 397, 566 Substitutional impurity, 49 Superalloys, 902 Superposition: for cracked members, 326 in linear viscoelasticity, 819 for stresses, 856 Surface crack, 319, 322 Surface finish effects, in fatigue, 406, 461, 733 SWT parameter, 415, 472, 487, 739 Synergistic effects, 28 Synthesis in design, 30 T Tangent modulus, 77 Technology, 34, 35 (table) Temperature (tables): glass transition, 907 heat deflection, 91 melting, 92, 886, 907 Temperature-compensated time, 798 Temperature effects for: creep, 777, 786, 788, 789, 796 fatigue, 403, 733, 809 fatigue crack growth, 543 fracture toughness, 334 notch-impact tests, 140 glass transition, 54, 63, 788, 906 tension test, 92 Temperature, safety margin in, 806 Temperature transition for: fracture toughness, 334 notch-impact tests, 140 Tempering, 896 Tensile toughness, 82, 103 Tension test, 22, 71 necking behavior, 80 properties from, 76, 103, 104 (table) trends in behavior, 89Index 963 Tension test (Continued) triaxial stress correction, 99 true stress–strain analysis, 95 values from (tables), 90, 91, 93, 107, 300, 383, 535, 538, 641, 727, 881 Tensors, tensor shear strain, 224, 626 Tertiary stage creep, 780 Test equipment, 67, 390, 779 Test methods, standard, 68 (see also ASTM Standards; Tests) Tests (see also each type, such as Bending, etc.): bending (flexure), 142 component, 33, 485 compression, 124 creep, 779 cyclic stress–strain, 644 environmentally assisted cracking, 592, 606 fatigue, 390, 485 fatigue, low-cycle, 644, 724, 735 fatigue crack growth, 526 fracture toughness, 331, 347, 349, 354 hardness, 129 heat-deflection, 91 (table), 144 notch-impact, 91 (table), 137 prototype (simulated service), 33 tension, 71 torsion, 144 Test specimens, 66, 331, 394, 526 Test standards, 68 (see also ASTM Standards; Tests) Theoretical cohesive strength, 56, 86 Thermal activation, 599, 786, 789, 792 Thermal strains, stresses, 174 Thermoelastic effect, 834 Thermoplastics, 903, 904 (table), 904, 905 Thermosetting plastics, 903, 904 (table), 906 Thickness effect: fatigue crack growth, 568 fracture, 299, 331, 347, 350 yielding at notches, 694 Thick-walled tubes, 860 Three-dimension stress states (see Multiaxial stress) Threshold stress intensity: environmentally assisted cracking, 592, 594 (table), 601, 603 fatigue crack growth, 521, 537, 540, 570 Thin-walled tubes, 146, 861 Time-fraction rule, 809 Time-hardening rule, 821 Time–temperature parameters, 796, 802 (table) Titanium alloys, 901 Tolerance limits, 880 Tool steels, 898 Torsion of shafts, 683, 856, 861 analysis for various τ-γ curves, 685 fully plastic case, 867 stress–strain curves for, 684 Torsion test, 144, 146 Total strain plasticity theory, 616, 626, 634 Toughness, fracture, 23, 299, 331, 354 (see also Fracture toughness) Toughness, tensile, 82, 103 Transformation equations: strain, 224 stress, 198, 215 Transgranular fracture, 567, 595 Transversely isotropic material, 180, 185 Transient (primary stage) creep, 155, 161, 780, 810 (see also Creep) Transition crack length, 302 Transition fatigue life, 729 Tresca yield criterion, 243 Triaxial stress (see also Multiaxial stress) in tension test, 99 Triaxiality factor, 745 True fracture strain, 103, 107 (table), 730, 731 True fracture strength, 103, 382, 414, 730, 731, 737 values of (tables), 107, 383, 727 True stress and strain, 96 (see also Tension test) True stress–strain curves, 102 True toughness, 103 Tubes: stresses in, 858 torsion test of, 146 U Ultimate strength, 77 brittle materials, 242, 260, 262, 272 compression, 127 from hardness, 136, 137 (table) notched members, 469, 873 tension, 22, 77 values of (tables), 90–93, 266, 300, 383, 641, 727, 881 Unit cell, 46 Unit damping energy, 831964 Index Universal testing machine, 68 Unloading: rheological modeling of, 635 stress–strain curves, 616, 639 Unloading compliance, 354 UNS numbering system, 893, 898, 900, 902 V Vacancy, 49, 60, 789 Valley, 430 Van der Waals bond, 45 Variable amplitude loading, 388, 427 crack growth, 558, 562 effect on fatigue limit, 408, 429, 763 rheological modeling, 635, 640 sequence effects, 408, 428, 500, 562, 759, 762 sources of, 388 in strain-based fatigue, 751, 756, 759, 762 stress–strain analysis of, 705, 751 stress–strain behavior, 650 Vibratory loads, 388 Vickers hardness test, 131, 134 (table), 137 (table) Viscoelasticity, 159 (see also Linear viscoelasticity) Viscosity, 156, 159, 785, 823 Viscous creep, 785, 788, 789 Volumetric strain, 173, 176, 628, 823 Von Mises yield criterion, 249 Vulcanization, 909 W Walker equation: fatigue, 415, 472, 475, 487, 740 crack growth, 532, 535 (table), 540 Weakest-link effect, 454 Welded members: S-N curves, 407, 489, 501 design codes, 491, 493 Whiskers, 57, 920 properties (table), 57 Wohler, A., 376, 390 Working loads, 388 Wrought metals, 885, 894, 900 Y Yield criteria, 236, 256, 279 anisotropic case, 259 maximum shear stress, 243 octahedral shear stress, 249 polymers, 260 Yield strength, 21 (see also Plastic deformation) compression, 127 cyclic loading, 647 tension, 78 values of (tables), 90, 91, 93, 300, 383, 535, 538, 727, 881 Yield surface, 239 (see also Yield criteria) Yielding, 21, 78 (see also Plastic deformation) in bending, 671, 867 in cyclic loading, 465, 470 for notched members, 686 fully plastic, 864 (see also Fully plastic behavior) Young’s modulus, 21, 77 (see also Elastic modulus) Z Zero-mean-stress-equivalent life, 736, 737, 740, 741 Zero-to-tension cycling,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mechanical Behavior of Materials - Engineering Methods for Deformation, Fracture, and Fatigue رابط مباشر لتنزيل كتاب Mechanical Behavior of Materials - Engineering Methods for Deformation, Fracture, and Fatigue
|
|